1.33. К стержню OA шарнирного механизма приложен момент M, к шарниру A – горизонтальная сила F. Масса цилиндра m1, бруска — m2; AO = AB = 2a, AC = CD = a. За обобщенную координату принять ϕ.  1.34. К стержню AB шарнирного механизма приложен момент M, к шарниру A – горизонтальная сила F. Масса цилиндра m1, бруска — m2; AO = AB = 2a, AC = CD = a. За обобщенную координату принять ϕ 1.35. К стержню OA шарнирного механизма приложен момент M, к шарниру A – вертикальная сила F. Масса цилиндра m1, бруска — m2; AO = AB = 2a, AC = CD = a. За обобщенную координату принять ϕ. 1.36. К стержню AB шарнирного механизма приложен момент M, к шарниру A – вертикальная сила F. Масса цилиндра m1, бруска — m2; AO = AB = 2a, AC = CD = a. За обобщенную координату принять ϕ. 1.37. К стержню OA шарнирного механизма приложен момент M, к шарниру A – горизонтальная сила F. Масса цилиндра m1, стержня OA — m2; AO = AB = a. За обобщенную координату принять ϕ. 1.38. К стержню AB шарнирного механизма приложен момент M, к шарниру A – горизонтальная сила F. Масса цилиндра m1, стержня AB — m2; AO = AB = a. За обобщенную координату принять ϕ. 1.39. Стержни OC и OA жестко скреплены под углом 90◦ . В точке C расположена масса m1. Масса цилиндра — m2. К стержню OA приложен момент M. На шарнир A действует сила F. OA = OC = AB = a. За обобщенную координату принять ϕ. 1.40. Стержни OC и OA жестко скреплены под углом 90◦ . В точке C расположена масса m1. Масса OA — m2. К цилиндру радиуса R приложен момент M. На шарнир A действует сила F. OA = OC = AB = a. За обобщенную координату принять ϕ. Задача№ 1.45.Цилиндр радиуса R массы m1 катится по горизонтальной поверхности и находится в зацеплении с тонкой пластиной массы m2. Другой гранью пластина скользит без сопротивления по вертикальной грани бруска. За обобщенную координату принять ϕ. Задача№ 1.46. Цилиндр радиуса R массы m1 катится по горизонтальной поверхности и находится в зацеплении с тонкой пластиной . Другой гранью пластина скользит без сопротивления по вертикальной грани бруска массы m2. За обобщенную координату принять ϕ. Задача№ 1.47. Цилиндр радиуса r массы m1 катится по горизонтальной поверхности.Стержень длиной a жестко соединен с цилиндром и скользит по грани подвижного блока массой m2. За обобщенную координату принять ϕ. Задача№ 1.48. Цилиндр радиуса r катится по горизонтальной поверхности.Стержень длиной aмассой m1 жестко соединен с цилиндром и скользит по грани подвижного блока массой m2. За обобщенную координату принять ϕ 1.57. Невесомый изогнутый под прямым углом стержень соединяет груз массой m1 и поршень массой m2, движущийся в вертикальных направляющих. AB = a, BC = b. Момент M приложен к стержню, горизонтальная сила F — к углу B. За обобщенную координату принять ϕ. 1.58. Невесомый изогнутый под прямым углом стержень соединяет цилиндр массой m1 и поршень массой m2, движущийся в вертикальных направляющих. AB = a, BC = b. Момент M приложен к стержню, горизонтальная сила F — к углу B. За обобщенную координату пр (Решение → 36)

1.33. К стержню OA шарнирного механизма приложен момент M, к шарниру A – горизонтальная сила F. Масса цилиндра m1, бруска — m2; AO = AB = 2a, AC = CD = a. За обобщенную координату принять ϕ. 
1.34. К стержню AB шарнирного механизма приложен момент M, к шарниру A – горизонтальная сила F. Масса цилиндра m1, бруска — m2; AO = AB = 2a, AC = CD = a. За обобщенную координату принять ϕ
1.35. К стержню OA шарнирного механизма приложен момент M, к шарниру A – вертикальная сила F. Масса цилиндра m1, бруска — m2; AO = AB = 2a, AC = CD = a. За обобщенную координату принять ϕ.
1.36. К стержню AB шарнирного механизма приложен момент M, к шарниру A – вертикальная сила F. Масса цилиндра m1, бруска — m2; AO = AB = 2a, AC = CD = a. За обобщенную координату принять ϕ.
1.37. К стержню OA шарнирного механизма приложен момент M, к шарниру A – горизонтальная сила F. Масса цилиндра m1, стержня OA — m2; AO = AB = a. За обобщенную координату принять ϕ.
1.38. К стержню AB шарнирного механизма приложен момент M, к шарниру A – горизонтальная сила F. Масса цилиндра m1, стержня AB — m2; AO = AB = a. За обобщенную координату принять ϕ.
1.39. Стержни OC и OA жестко скреплены под углом 90◦ . В точке C расположена масса m1. Масса цилиндра — m2. К стержню OA приложен момент M. На шарнир A действует сила F. OA = OC = AB = a. За обобщенную координату принять ϕ.
1.40. Стержни OC и OA жестко скреплены под углом 90◦ . В точке C расположена масса m1. Масса OA — m2. К цилиндру радиуса R приложен момент M. На шарнир A действует сила F. OA = OC = AB = a. За обобщенную координату принять ϕ.
Задача№ 1.45.Цилиндр радиуса R массы m1 катится по горизонтальной поверхности и находится в зацеплении с тонкой пластиной массы m2. Другой гранью пластина скользит без сопротивления по вертикальной грани бруска. За обобщенную координату принять ϕ.
Задача№ 1.46. Цилиндр радиуса R массы m1 катится по горизонтальной поверхности и находится в зацеплении с тонкой пластиной . Другой гранью пластина скользит без сопротивления по вертикальной грани бруска массы m2. За обобщенную координату принять ϕ.
Задача№ 1.47. Цилиндр радиуса r массы m1 катится по горизонтальной поверхности.Стержень длиной a жестко соединен с цилиндром и скользит по грани подвижного блока массой m2. За обобщенную координату принять ϕ.
Задача№ 1.48. Цилиндр радиуса r катится по горизонтальной поверхности.Стержень длиной aмассой m1 жестко соединен с цилиндром и скользит по грани подвижного блока массой m2. За обобщенную координату принять ϕ
1.57. Невесомый изогнутый под прямым углом стержень соединяет груз массой m1 и поршень массой m2, движущийся в вертикальных направляющих. AB = a, BC = b. Момент M приложен к стержню, горизонтальная сила F — к углу B. За обобщенную координату принять ϕ.
1.58. Невесомый изогнутый под прямым углом стержень соединяет цилиндр массой m1 и поршень массой m2, движущийся в вертикальных направляющих. AB = a, BC = b. Момент M приложен к стержню, горизонтальная сила F — к углу B. За обобщенную координату принять ϕ.
1.59. Стержень длиной L с точкой массой m1 на конце жестко соединен с диском радиуса R. Масса диска m2. На диск положен без проскальзывания горизонтальный брусок, опирающийся одним концом на подшипник. Момент M приложен к стержню. За обобщенную координату принять ϕ.
1.60. Стержень длиной L с точкой массой m1 на конце жестко соединен с диском радиуса R. На диск положен без проскальзывания горизонтальный брусок массой m2, опирающийся одним концом на подшипник. Момент M приложен к стержню. За обобщенную координату принять ϕ
1.81. Цилиндр радиуса R прижимается скошенным прессом (призмой) к пластине, скользящей по гладкой горизонтальной поверхности. Масса цилиндра m1, призмы — m2. К цилиндру приложен момент M, к пластине — горизонтальная сила F. Проскальзывание в точках контакта цилиндра отсутствует. За обобщенную координату принять перемещение пластины x.
1.82. Цилиндр радиуса R прижимается скошенным прессом (призмой) к пластине, скользящей по гладкой горизонтальной поверхности. Масса пластины m1, призмы — m2. К цилиндру приложен момент M, к пластине — горизонтальная сила F. Проскальзывание в точках контакта цилиндра отсутствует. За обобщенную координату принять перемещение пластины x
1.83. Внешним ободом блок катится по неподвижной поверхности, внутренним — касается подвижного штока. На внутреннем ободе блока расположена точка массой m1. Радиусы блока R и r. Масса блока m2, радиус инерции — ρ. К блоку приложен момент M, к штоку — сила F. За обобщенную координату принять ϕ
1.84. Внутренним ободом блок катится по неподвижной поверхности, внешним — касается штока, скользящего в горизонтальных направляющих. На блоке расположена точка массой m1. Радиусы блока R и r. Масса штока m2. К блоку приложен момент M, к штоку — сила F. За обобщенную координату принять ϕ.