Проводниковые материалы. 2

 

 

Оглавление

 

 
Введение


 

В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы.

Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление r при нормальной температуре не более 0,05 мкОм×м, и сплавы высокого сопротивления, имеющие r при нормальной температуре не менее 0,3 мкОм×м. Металлы высокой проводимости используются для проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления применяются для изготовления резисторов, электронагревательных приборов, нитей ламп накаливания.

К жидким проводникам относятся расплавленные металлы и различные электролиты. Для большинства металлов температура плавления высока; только ртуть, имеющая температуру плавления около минус 39°С, может быть использована в качестве жидкого металлического проводника при нормальной температуре. Другие металлы являются жидкими проводниками при повышенных температурах.

Механизм прохождения тока в металлах — как в твердом, так и в жидком состоянии — обусловлен движением (дрейфом) свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода. Проводниками второго рода, или электролитами, являются растворы (в частности, водные) кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов в соответствии с законами Фарадея, вследствие чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза. Ионные кристаллы в расплавленном состоянии также являются проводниками второго рода.

Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля превзойдет некоторое критическое значение, обеспечивающее начало ударной и фотоионизации, то газ может стать проводником с электронной и ионной электропроводностью. Сильно ионизированный газ при равенстве числа электронов числу положительных ионов в единице объема представляет собой особую проводящую среду, носящую название плазмы.

 

1. Свойства проводников

 

К важнейшим параметрам, характеризующим свойства проводниковых материалов, относятся:

1) удельная проводимость g или обратная ей величина  — удельное сопротивление r,

2) температурный коэффициент  удельного сопротивления ТКr или ar ,

3) коэффициент теплопроводности gт ,

4) контактная разность  потенциалов и термоэлектродвижущая  сила (термо-ЭДС),

5) работа выхода электронов  из металла,

6) предел прочности при  растяжении sр и относительное  удлинение перед разрывом Dl/l .

Удельная проводимость и удельное сопротивление проводников. Связь плотности тока J (в амперах на квадратный метр) и напряженности электрического поля (в вольтах на метр) в проводнике дается известной формулой:

J= gE (1-1)

(дифференциальная форма  закона Ома); здесь g (в сименсах  на метр) параметр проводникового  материала, называемый его удельной  проводимостью: в соответствии с  законом Ома у металлических  проводников не зависит от  напряженности электрического поля  Е при изменении последней  в весьма широких пределах. Величина r = 1/g, обратная удельной проводимости  и называемая удельным сопротивлением, для имеющего сопротивление R проводника  длиной l с постоянным поперечным  сечением S вычисляется по формуле

r = RS/l (1-2)

Удельное сопротивление измеряется в ом-метрах. Для измерения r проводниковых материалов разрешается пользоваться внесистемной единицей Ом×мм2 /м; очевидно, что проволока из материала длиной 1 м с поперечным сечением 1 мм2 имеет сопротивление в омах, численно равно r материала в Ом×мм2 /м.

Диапазон значений удельного сопротивления r металлических проводников (при нормальной температуре) довольно узок: от 0,016 для серебра и до примерно 10 мкОм×м для железохромоалюминиевых сплавов, т.е. он занимает всего три порядка. Удельная проводимость металлических проводников согласно классической теории металлов может быть выражена следующим образом:

g = (e2 n0 l)/(2mvT ) (1-3)

где е — заряд электрона; n0 — число свободных электронов в единице объема металла; l — средняя длина свободного пробега электрона между двумя соударениями с узлами решетки; т — масса электрона; vT — средняя скорость теплового движения свободного электрона в металле.

Преобразование выражения (1-3) на основе положений квантовой механики приводит к формуле

g = K0 2/3 l (1-4)

где K — численный коэффициент; остальные обозначения — прежние.

Для различных металлов скорости хаотического теплового движения электронов v T (при определенной температуре) примерно одинаковы. Незначительно различаются также и концентрации свободных электронов п0 (например, для меди и никеля это различие меньше 10 %). Поэтому значение удельной проводимости у (или удельного сопротивления r) в основном зависит от средней длины свободного пробега электронов в

Рис. 1-1. Зависимость удельного сопротивления r меди от температуры

данном проводнике l, которая, в свою очередь, определяется структурой проводникового материала. Все чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления; примеси, искажая решетку, приводят к увеличению r. К такому же выводу можно прийти, исходя из волновой природы электронов. Рассеяние электронных волн происходит на дефектах кристаллической решетки, которые соизмеримы с расстоянием около четверти длины электронной волны. Нарушения меньших размеров не вызывают заметного рассеяния волн. В металлическом проводнике, где длина волны электрона около 0,5 нм, микродефекты создают значительное рассеяние, уменьшающее подвижность электронов, и, следовательно, приводит к росту r материала.

Температурный коэффициент удельного сопротивления металлов. Число носителей заряда (концентрация свободных электронов) в металлическом проводнике при повышении температуры практически остается неизменным. Однако вследствие усиления колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т. е. уменьшается средняя длина свободного пробега электрона l. уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 2-1). Иными словами, температурный коэффициент удельного сопротивления металлов, (кельвин в минус первой степени)

TKr =ar = (1/r) (d r/dT ) (1-5)

положителен. Согласно выводам электронной теории металлов значения ar ., чистых металлов в твердом состоянии должны быть близки к температурному коэффициенту расширения идеальных газов, т.е. 1/273»0,0037 К-1 . При изменении температуры в узких диапазонах на практике допустима кусочно-линейная аппроксимация зависимости r (Т); в этом случае принимают, что

r2 = r1 [1+ar (T2 –T1 )] (1-6)

где r1 , и r2 — удельные сопротивления проводникового материала при температурах Т1 , и T2 , соответственно (при этом T2 > Т1 );

ar — так называемый  средний температурный коэффициент  удельного сопротивления данного  материала в диапазоне температур  от Т1 , до Т2 .

Изменение удельного сопротивления металлов при плавлении. При переходе из твердого состояния в жидкое у большинства металлов наблюдается увеличение удельного сопротивления r, как это видно, например для меди, из рис. 2-1; однако у некоторых металлов r при плавлении уменьшается. Удельное сопротивление увеличивается при плавлении у тех металлов, у которых при плавлении увеличивается объем, т. е. уменьшается плотность; и, наоборот, у металлов, уменьшающих свой объем при плавлении, — галлия, висмута, сурьмы r уменьшается.

Удельное сопротивление сплавов. Как уже указывалось, примеси и нарушения правильной структуры металлов увеличивают их удельное сопротивление. Значительное возрастание r наблюдается при сплавлении двух металлов в том случае, если они образуют друг с другом твердый раствор, т. е. при (утверждении совместно кристаллизуются, и атомы одного металла входят в кристаллическую решетку другого.

Теплопроводность металлов. За передачу теплоты через металл в основном ответственны те же свободные электроны, которые определяют и электропроводность металлов и число которых в единице объема металла весьма велико. Поэтому, как правило, коэффициент теплопроводности gT металлов намного больше, чем коэффициент теплопроводности диэлектриков. Очевидно, что при прочих равных условиях, чем больше удельная электрическая проводимость у металла, тем больше должен быть и его коэффициент теплопроводности. Легко также видеть, что при повышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость g уменьшаются, отношение коэффициента теплопроводности металла к его удельной проводимости gT /g должно возрастать. Математически это выражается законом Вчдемана—Франца—Лоренца:

gT /g = LoT (1-7)

где Т —термодинамическая температура, К; Lo —число Лоренца, равное

Lo=(p2 k 2 )/(3e 2 ) (1-8)

Подставляя в формулу (1-8) значения постоянной Больцмана k = 1.38 ×10-23 Дж/К и заряда электрона е = 1,6×10-19 Кл, получаем Lo = 2,45×10-8 B2 K2 .

Термоэлектродвижущая сила. При соприкосновении двух различных металлических проводников между ними возникает контактная разность потенциалов. Причина появления этой разности потенциалов заключается в различии значений работы выхода электронов из различных металлов, а также в том, что концентрация электронов, а следовательно, и давление электронного газа у разных металлов и сплавов могут быть неодинаковыми. Из электронной теории металлов следует, что контактная разность потенциалов между металлами А и В равна

UAB =UB - UA + (kT/e) ln (n0A /n0B ) (1-9)

где UA и UB — потенциалы соприкасающихся металлов; n0A и n0B — концентрации электронов в металлах А и В; k — постоянная Больцмана; e —абсолютная величина заряда электрона.

Если температуры «спаев» одинаковы, то сумма разности потенциалов в замкнутой цепи равна нулю. Иначе обстоит дело, когда один из спаев имеет температуру T1 , а другой —температуру Т2 ( рис. 1-2).

 

Рис. 1-2. Схема термопары

В этом случае между спаями возникает термо-ЭДС, равная

U = (k/e) (T1 - T2 ) ln (n0A /n0B ) (1-10)

Что можно записать в виде

U = y (T1 – T2 ) (1-11)

где y — постоянный для данной пары проводников коэффициент термоЭДС, т. е. термо-ЭДС должна быть пропорциональна разности температур спаев.

Температурный коэффициент линейного расширения проводников. Этот коэффициент, интересен не только при рассмотрении работы различных сопряженных материалов в той или иной конструкции (возможность растрескивания или нарушения вакуум-плотного соединения со стеклами, керамикой при изменении температуры и т. п.). Он необходим также и для расчета температурного коэффициента электрического сопротивления провода

TKR = aR = ar – al (1-12)

 

2. Общие требования

 

В. ряде случаев от проводниковых материалов требуется высокое удельное сопротивление и малый температурный коэффициент сопротивления. Перечисленными свойствами обладают сплавы на основе меди, никеля и марганца, а также других металлов. Из чистых металлов сюда следует отнести ртуть, так как она обладает большим удельным сопротивлением (q = 0,94 ом-мм2/м) . Наибольшее применение имеют проводниковые сплавы с большим удельным сопротивлением (q = 0,42—0,52 ом-мм2/м). Проволока и ленты из этих сплавов применяются для изготовления точных (образцовых) сопротивлений, пусковых и регулирующих реостатов, электронагревательных приборов и электрических печей сопротивления. В каждом из перечисленных случаев применения эти сплавы должны иметь дополнительные свойства, определяемые назначением прибора, в котором он используется. Так, сплавы, применяемые для изготовления точных сопротивлений, должны еще обладать малой термоэлектродвижущей силой (термо-э. д. с.) при контакте (в паре) с медью. Кроме того, они должны обеспечивать постоянство электрического сопротивления во времени. Для таких областей применения, как электронагревательные приборы, электрические печи сопротивления и другие устройства, работающие при высоких температурах (800--1100° С), требуются проводниковые материалы, могущие длительно работать при высоких температурах без заметного окисления. Этим требованиям удовлетворяют жаростойкие проводниковые сплавы.

Общим же свойством всех перечисленных сплавов является их большое удельное электрическое сопротивление, поэтому они называются сплавами высокого электрического сопротивления. Эти сплавы представляют собой твердые растворы металлов с неупорядоченной структурой . Они удовлетворяют перечисленным выше требованиям.

 

3.Проводниковые материалы высокой проводимости

 

Металлические проводниковые материалы имеют поликристаллическое строение, т.е. состоят из множества мелких кристалликов. Большинство металлических проводников (Cu,Al,Ag...) обладают большой проводимостью, т.е. малым удельным электрическим сопротивлением,p=0,015 – 0,028 мкОм.м (1 мкОм.м=1 Ом.мм2/м). К наиболее распространенным металлам высокой проводимости относятся серебро, медь, алюминий и др.

  • Медь.

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

1) малое удельное сопротивление (из всех материалов только  серебро имеет несколько меньшее  удельное сопротивление, чем медь);

2) достаточно высокая  механическая прочность;

3) удовлетворительная в  большинстве случаев стойкость  по отношению к коррозии (медь  окисляется на воздухе даже  в условиях высокой влажности  значительно медленнее, чем, например, железо; интенсивное окисление меди  происходит только при повышенных  температурах);

4) хорошая обрабатываемость (медь прокатывается в листы, ленты  и протягивается в проволоку, толщина которой может быть  доведена до тысячных долей  миллиметра);

5) относительная легкость  пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После нескольких плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехники, обязательно проходит процесс электролитической очистки. Полученные после электролиза катодные пластины меди переплавляют в болванки массой 80—90 кг, которые прокатывают и протягивают в изделия требующегося поперечного сечения. При изготовлении проволоки болванки сперва подвергают горячей прокатке в так называемую катанку диаметром 6,5—7,2 мм; затем катанку протравливают в слабом растворе серной кислоты, чтобы удалить с ее поверхности оксид меди СuО, образующийся при нагреве, а затем уже протягивают без подогрева в проволоку нужных диаметров — до 0,03—0,02 мм.

Стандартная медь, в процентах по отношению к удельной проводимости которой иногда выражают удельные проводимости металлов и сплавов, в отожженном состоянии при 20 °С имеет удельную проводимость 58 МСм/м, т. е. r = 0,017241 мкОм×м. Твердую медь употребляют там, где надо обеспечить особо высокую механическую прочность, твердость и сопротивляемость истиранию (для контактных проводов, для шин распределительных устройств, для коллекторных пластин электрических машин и пр.). Мягкую медь в виде проволок круглого и прямоугольного сечения применяют главным образом в качестве токопроводящих жил кабелей и обмоточных проводов, где важна гибкость и пластичность (не должна пружинить при изгибе), а не прочность. Медь является сравнительно дорогим и дефицитным материалом. Поэтому она должна расходоваться весьма экономно. Отходы меди на электротехнических предприятиях необходимо тщательно собирать; важно не смешивать их с другими металлами, а также с менее чистой (не электротехнической) медью, чтобы можно было эти отходы переплавить и вновь использовать в качестве электротехнической меди. Медь как проводниковый материал все шире заменяется другими металлами, в особенности алюминием.

Сплавы меди . В отдельных случаях помимо чистой меди в качестве проводникового материала применяются ее сплавы с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь: sр бронз может быть 800—1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п. Введение в медь кадмия при сравнительно малом снижении удельной проводимости значительно повышает механическую прочность и твердость. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (sр —до 1350 МПа). Сплав меди с цинком — латунь — обладает достаточно высоким относительным удлинением перед разрывом при повышенном по сравнению с чистой медью пределе прочности при растяжении. Это дает латуни технологические преимущества перед медью при обработке штамповкой, глубокой вытяжкой и т. п. В соответствии с этим латунь применяют в электротехнике для изготовления всевозможных токопроводящих деталей.

  • Алюминий

Алюминий является вторым по значению (после меди) проводниковым материалом. Это важнейший представитель так называемых легких металлов (т. е. металлов с плотностью менее 5 Мг/м3 ); плотность литого алюминия около 2,6, а прокатанного —2,7 Мг/м3 . Таким образом, алюминий приблизительно в 3,5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата теплоты, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами — как механическими, так и электрическими. При одинаковых сечении и длине электрическое сопротивление алюминиевого провода больше, чем медного, в 0,028 : 0,0172 = 1,63 раза. Следовательно, чтобы получить алюминиевый провод такого же электрического сопротивления, как и медный, нужно взять его сечение в 1,63 раза большим, т. е. диаметр должен быть в » 1,3 раза больше диаметра медного провода. Отсюда понятно, что если ограничены габариты, то замена меди алюминием затруднена. Если же сравнить по массе два отрезка алюминиевого и медного проводов одной длины и одного и того же сопротивления, то окажется, что алюминиевый провод хотя и толще медного, но легче его приблизительно в два раза:8,9/(2,7×1,63) »2.

Поэтому для изготовления проводов одной и той же проводимости при данной длине алюминий выгоднее меди в том случае, если тонна алюминия дороже тонны меди не более чем в два раза. Весьма важно, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий, содержащий не более 0,5 % примесей, марки А1. Еще более чистый алюминий марки АВОО (не более 0,03 % примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов оксидных конденсаторов. Алюминий наивысшей чистоты АВОООО имеет содержание примесей, не превышающее 0,004 %. Разные примеси в различной степени снижают удельную проводимость g алюминия. Добавки Ni, Si, Zn или Fe при содержании их 0,5 % снижают y отожженного алюминия не более чем на 2—3 %. Более заметное действие оказывают примеси Сu, Ag и Mg, при том же массовом содержании снижающие v алюминия на 5—10 %. Очень сильно снижают g алюминия добавки Ti и Мп.

Прокатка, протяжка и отжиг алюминия аналогичны соответствующим операциям над медью. Из алюминия может прокатываться тонкая (до 6—7 мкм) фольга, применяемая в качестве электродов бумажных и пленочных конденсаторов.

Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет алюминий от дальнейшей коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов и делает невозможной пайку алюминия обычными методами. Для пайки алюминия применяются специальные пасты-припои или используются ультразвуковые паяльники. В местах контакта алюминия и меди возможна гальваническая коррозия. Если область контакта подвергается действию влаги, то возникает местная гальваническая пара с довольно высоким значением ЭДС, причем полярность этой пары такова, что на внешней поверхности контакта ток идет от алюминия к меди и алюминиевый проводник может быть сильно разрушен коррозией. Поэтому места соединения медных проводников с алюминиевыми должны тщательно защищаться от увлажнения (покрытием лаками и тому подобными способами).

Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей содержащий 0,3-0,5 % Mg, 0,4-0,7 % Si и 0,2-0,3 % Fe (остальное Аl). Высокие механические свойства альдрей приобретает после особой обработки (закалки катанки—охлаждение в воде при температуре 510—550°С волочение и последующая выдержка при температуре около 150 °С). В альдрее образуется соединение Mg2 Si, которое сообщает высокие механические свойства сплаву; при указанной выше тепловой обработке достигается выделение MgoSi из твердого раствора и перевод его в тонкодисперсное состояние.

 

4.Сплавы высокого сопротивления

 

Сплавы высокого сопротивления при нормальной температуре имеют с не менее 0,3 мкОмЧм. При использовании этих сплавов для электроизмерительных приборов и образцовых резисторов, помимо высокого удельного сопротивления требуются также высокая стабильность значения с во времени, малый температурный коэффициент удельного сопротивления ТКс и малый коэффициент термо-ЭДС в паре сплава с медью. Сплавы для электронагревательных элементов должны длительно работать на воздухе при высоких температурах (иногда до 1000°С и даже выше). Кроме того, для многих случаев применения требуется технологичность сплавов – возможность изготовления из них тонкой гибкой проволоки.

Манганин, названный так из-за наличия в нем марганца (латинское manganum), – широко применяемый для изготовления образцовых резисторов и других элементов сплав. Его примерный состав: Cu – 85%, Mn – 12%, Ni – 3%. Желтоватый цвет объясняется большим содержанием меди. Значение с манганина 0,42-0,48 мкОмЧм; ТКс весьма мал – порядка (6-50)Ч106 К-1; коэффициент термо-ЭДС в паре с медью всего лишь 1-2 мкВ/К. Манганин может вытягиваться в тонкую (диаметром до 0,02 мм) проволоку; часто манганиновая проволока выпускается с эмалевой изоляцией. Для обеспечения малого значения ТКс и стабильности с манганиновую проволоку подвергают специальной термообработке (отжиг в вакууме при температуре порядка 550-600°С в течение 1-2 часов с последующим медленным охлаждением; намотанные катушки иногда дополнительно отжигаются при 200°С). Кроме того, требуется ещё длительное (до 1 года) выдерживание манганина при комнатной температуре.

Предельная длительно допустимая рабочая температура сплавов типа манганина не более 200°С.

Манганин (NiMn 3-12) является наиболее известным сплавом для прецизионных резисторов. Манганин применяют для изготовления датчиков, которыми измеряют высокие гидростатические давления.

Сопротивление манганиновой проволоки линейно возрастает с повышением давления от 0 до 1 ГПа; увеличение сопротивления при 1 ГПа – около 2,5% от исходного сопротивления при отсутствии давления.

Константан – сплав, содержащий около 60% меди и 40% никеля, что соответствует минимуму ТКс при довольно высоком значении с в системе Cu–Ni. Название «константан» объясняется значительным постоянством с при изменении температуры, т.е. малостью ТКс. Для константана при нормальной температуре с составляет 0,48-0,52 мкОмЧм.

Нагревостойкость константана выше, чем манганина: константан можно применять для изготовления реостатов и электронагревательных элементов, длительно работающих при температуре 450°С. Существенным отличием от манганина является высокая термо-ЭДС константана в паре с медью, а также с железом; его коэффициент термо-ЭДС в паре с медью составляет 44-55 мкВ/К. Это является недостатком при использовании константановых резисторов в измерительных схемах, так как при наличии разности температур в местах контакта константановых проводников с медными возникают паразитные термо-ЭДС, которые могут явиться источником ошибок, особенно при нулевых измерениях в мостовых и потенциометрических схемах. Однако константан с успехом может быть применен при изготовлении термопар, служащих для измерения температуры, если последняя не превышает 700°С. Эта термопара успешно применяется и при низких температурах вплоть до точки кипения водорода.

Широкому применению константана препятствует большое содержание в его составе дорогого и дефицитного никеля.

Сплавы высокого сопротивления на основе железа применяют в основном для электронагревательных элементов. Высокая нагревостойкость таких элементов объясняется введением в их состав достаточно больших количеств металлов, образующих при нагреве на воздухе практически сплошную оксидную пленку. Такими металлами являются в основном никель, хром и алюминий. Железо, как уже отмечалось, при нагреве легко окисляется; чем больше содержание железа в сплаве, например, с Ni и Cr, тем менее нагревостоек («жаростоек») этот сплав.

Сплавы системы Fe-Ni-Cr называют нихромами или (при повышенном содержании Fe) ферронихромами, сплавы системы Fe-Cr-Al – февралями и хромалями.

По принятым стандартам различные сплавы имеют условные обозначения, составляемые из букв и чисел. Буквы обозначают наиболее характерные элементы состава сплава, причем буква, входящая в название элемента, не всегда является первой буквой этого названия (например, Б означает ниобий, В – вольфрам, Г – марганец, Д – медь, К – кобальт, Л – бериллий, Н – никель, Т – титан, X – хром, Ю – алюминий и т.п.), число после соответствует приблизительному содержанию данного компонента в сплаве (в массовых процентах); дополнительные цифры в начале обозначения определяют повышенное (цифра 0) или пониженное количество сплава. Так, например, обозначение 0Х25Ю5 соответствует сплаву особо высокой жаростойкости с содержанием хрома около 25% и алюминия – около 5%.

Помимо скорости окисления того или иного чистого металла или компонента сплава, большое влияние на срок жизни нагревательного элемента, работающего на воздухе, оказывают свойства образующегося оксида. Если оксид летуч, то он не может защитить оставшийся металл от дальнейшего окисления. Легко улетучиваются, например, оксиды вольфрама и молибдена, поэтому такие металлы не могут работать в накаленном состоянии при доступе кислорода. Если же оксид не летуч, то он при окислении образует слой на поверхности металла.

Существенным являются близкие значения ТКс самих сплавов и их оксидных пленок. Этим объясняется стойкость хромоникелевых сплавов при высокой температуре на воздухе. Растрескивание оксидных пленок имеет место в основном при резких сменах температуры; тогда при последующих нагревах кислород воздуха проникает в образовавшиеся трещины и производит дальнейшее окисление сплава. Так, при многократном кратковременном включении электронагревательного элемента из нихрома он может перегореть значительно скорее, чем в случае непрерывной работы элемента при той же температуре.

На срок жизни элементов из нихрома и других жаростойких сплавов влияет также наличие колебаний значений сечения проволоки по ее длине; в местах с уменьшенным сечением элементы перегреваются и легче перегорают.

Проводниковые материалы. 2