Судьба Вселенной

Содержание

   Введение…………………………………………………………………..................3

   Глава 1. Исследование состава Вселенной………..………………….....................5

   Глава 2.Эволюция ………………………………………………………..................6

   Глава 3. Судьба Вселенной……………………………………………...................12

   Заключение…………………………………………………………….....................14

   Список литературы……………………………………………………....................15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

«Почему дым не возвращается в сигарету? Почему молекулы разлетаются  друг от друга? Почему клякса не приобретает четкую форму? Потому что Вселенная стремится к распаду. Это и есть принцип энтропии, стремление Вселенной к состоянию растущего беспорядка. Принцип энтропии связан с понятием стрелы времени, результатом расширения Вселенной. Но что если сила гравитации перевесит расширяющую силу или энергия квантового вакуума окажется слишком слабой? В этот момент во Вселенной может начаться стадия сжатия, „Большой Хлопок“. Так что же произойдет со временем? Пойдет ли оно вспять? Никто не знает ответа.»

Немо  «Господин никто»

Введение

   Вселенная - фундаментальное понятие астрономии, строго не определяемое, включает в себя весь окружающий мир. На практике под Вселенной часто понимают часть материального мира, доступную изучению естественнонаучными методами.

   Такое определение включает в себя две ипостаси: умозрительная, философская, и нечто материальное, доступное наблюдениям в настоящее время или в обозримом будущем. Если автор различает эти ипостаси, то следуя традиции, первую называют Вселенной, а вторую - астрономической Вселенной или Метагалактикой (в последнее время этот термин практически вышел из употребления).

   В историческом плане для обозначения  «всего пространства» использовались различные слова, включая эквиваленты  и варианты из различных языков, такие как «небесная сфера», «космос», «мир». Использовался также термин «макрокосмос», хотя он предназначен для определения систем большого масштаба, включая их подсистемы и части. Аналогично, слово «микрокосмос» используется для обозначения систем малого масштаба в составе гораздо большей системы, частью которой является исходная система.

   Любое исследование, любое наблюдение, будь то наблюдение ребёнка за кошкой, физика - за тем, как раскалывается ядро атома, или астронома, ведущего наблюдения за далёкой-далёкой галактикой - всё это наблюдение за Вселенной, а если быть точным - за отдельными её частями. Эти части служат предметом изучения отдельных естественных наук, а Вселенной в максимально больших масштабах, и даже Вселенной как единым целым занимаются астрономия и космология. Именно эти аспекты знаний о Вселенной составляют предмет данной статьи.

   С ранних времен человек задумывался  об устройстве окружающего его мира как единого целого. И в каждой культуре оно понималось и представлялось по-разному. Так в Вавилоне жизнь на Земле тесно связывали с движением звезд, а в Китае идеи гармонии переносились на всю Вселенную.

   Развитие  этих представлений в разных частях света шло по-разному. Но если в  Старом Свете накопленные знания и представления вообще никуда не девались, лишь передаваясь от одной цивилизации другой, то о Новом Свете такого сказать нельзя. Виной тому - колонизация Америки европейцами, уничтожавшая многие памятники древних культур.

   В период Средневековья представление  о мире как о едином целом не претерпевает существенных изменений. И тому две причины. Первая - сильное давление ортодоксальных богословов, характерное как для католической Европы, так и для исламского мира. Вторая - наследие прошлого, когда представления о мире строились из неких философских концепций. Необходимо было осознать, что астрономия часть физики.

   Первый  значительный толчок в сторону современных  представлений о Вселенной совершил Коперник. Второй по величине вклад  внесли Кеплер и Ньютон. Но по истине революционные изменения в наших  представлении о Вселенной происходят лишь в XX веке. 
 
 
 
 
 
 
 

Глава 1. Исследование состава Вселенной

   Согласно  последним научным данным о составе  Вселенной, такие объекты как  звезды, планеты, пыль и газ, составляют крошечную часть вселенной (5%). Остальное - неуловимая темная материя (~25 %) и темная энергия.

   Темная  энергия - это таинственная, мало изученная и пока еще гипотетическая форма энергии. 

Типичные  объекты исследований в космологии 

   Галактики -  это гигантские гравитационно-связанные системы, состоящие из звёзд и тёмной материи. Типичные представители в наблюдательной космологии. Методы наблюдений, применимые к галактикам, применимы почти ко всем космологическим объектам. Это и сравнения модельного спектра с наблюдаемым, и учёт металличности, и учёт пыли, и отождествление характерных особенностей частей спектра с наличием различных процессов внутри объекта.

   Квазары - класс внегалактических объектов, отличающихся очень высокой светимостью и настолько малым угловым размером, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» - звёзд. Болометрическая светимость квазаров может достигать 1046 - 1047 эрг/с. Считается, что причиной такой высокой светимости является аккреция межзвёздного газа на сверхмассивную чёрную дыру в центре галактики.

   Гамма-всплески - внезапные кратковременные локализуемые повышения интенсивности космического гамма-излучения с энергией в десятки и сотни кэВ. Из оценок расстояний до гамма-всплесков можно сделать вывод, что излучаемая ими энергия в гамма-диапазоне достигает 1050 эрг. Для сравнения, светимость всей галактики в этом же диапазоне составляет «всего» 1038 эрг/c.

   После обнаружения у гамма-всплесков  оптического послесвечения и  получения их спектров стало ясно, что гамма-всплески - далёкие объекты. На данный момент самым далёким зафиксированным объектом Вселенной является гамма-всплеск GRB 090423.

   Звёздное  скопление представляют собой гравитационно-связанные  группы звёзд, имеющих общее происхождение, и, соответственно, примерно одинаковый возраст и химический состав. Более массивные звёзды скопления раньше проходят все этапы своей эволюции, превращаясь либо в компактные релятивистские объекты (нейтронные звёзды и чёрные дыры), либо в белые карлики, а менее массивные продолжают находиться на главной последовательности.

   Не  проэволюционировавшие или слабо проэволюционировавшие объекты. В данную группу включены как галактики, так и звёзды. Характерной чертой данных объектов является их низкая металличность. Они в основном состоят из того вещества, из которого состояли самые первые звёзды и галактики.

   Реликтовый  фон - чернотельное однородное излучение со средней температурой 2,72 К, заполняющее Вселенную. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Глава 2. Эволюция

   Существует  несколько теории эволюции. Теория пульсирующей Вселенной утверждает, что наш мир произошел в результате гигантского взрыва. Но расширение Вселенной не будет продолжаться вечно, т.к. его остановит гравитация. По этой теории наша Вселенная расширяется на протяжении 18 млрд. лет со времени взрыва. В будущем расширение полностью замедлится, и произойдет остановка. А затем Вселенная начнёт сжиматься до тех пор, пока вещество опять не сожмется и произойдет новый взрыв.

   Теория  Стационарного взрыва: согласно ей Вселенная не имеет ни начала, ни конца. Она все время пребывает в одном и том же состоянии. Постоянно идет образование нового водоворота, чтобы возместить вещество удаляющимися галактиками. Вот по этой причине Вселенная всегда одинакова, но если Вселенная, начало которой положил взрыв, будет расширяться до бесконечности, то она постепенно охладится и совсем угаснет.

   Но  пока ни одна из этих теорий не доказана, т.к. на данный момент не существует ни каких точных доказательств хотя бы одной из них.

   Однако  стоит отметить и еще одну теорию (принцип).

   Антропный (человеческий) принцип первым сформулировал в 1960 году Иглис Г.И., но он является как бы неофициальным его автором. А официальным автором был ученый по фамилии  Картер.

   Антропный принцип утверждает, что Вселенная  такая, какая она есть потому, что  есть наблюдатель или же он должен появиться на определенном этапе развития. В доказательство создатели этой теории приводят очень интересные факты. Это критичность фундаментальных констант и совпадение больших чисел. Получается, что они полностью взаимосвязаны и их малейшее изменение приведет к полному хаосу. То, что такое явное совпадение и даже можно сказать закономерность существует, дает этой, безусловно интересной теории шансы на жизнь.

Начало  Вселенной.             

   Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция  жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое. Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был настолько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом.

   Момент  с которого Вселенная начала расширятся, принято считать ее началом. Тогда  началась первая и полная драматизма эра в истории вселенной, ее называют  Большим взрывом или английским термином Big Bang.

   Под расширением Вселенной подразумевается  такой процесс, когда то же самое  количество элементарных частиц и фотонов  занимают постоянно возрастающий объём. Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом Плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой. Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения Большого взрыва вся материя была сильно раскаленной  и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы.

   Подробный анализ показывает, что температура  вещества Т понижалась во времени  в соответствии с простым соотношением:

     Зависимость температуры Т от  времени t дает нам возможность  определить, что например, в момент, когда возраст вселенной исчислялся всего одной десятитысячной секунды,  её температура представляла  один  биллион Кельвинов. Температура раскаленной плотной материи на начальном этапе Вселенной со временем понижалась, что и отражается в соотношении. Это значит, что понижалась средняя кинетическая энергия частиц kT . Согласно соотношению hn=kT понижалась и энергия фотонов. Это возможно лишь в том случае, если уменьшится их частота  n.

   Понижение энергии фотонов во времени имело для возникновения частиц и античастиц путем материализации важные последствия. Для того чтобы фотон превратился (материализовался) в частицу и античастицу с массой mo и энергией покоя moc²,  ему необходимо обладать энергией 2moc2 или

   большей. Эта  зависимость выражается  так: со временем энергия фотонов понижалась, и как только она упала ниже произведения энергии частицы и античастицы (2moc²), фотоны уже не способны были обеспечить возникновение частиц и античастиц с массой mo. Так, например, фотон, обладающий энергией меньшей, чем 2.938 Мэв = 938 Мэв, не способен материализоваться в протон и антипротон, потому что энергия покоя протона равна 938 мэв.

   В предыдущем соотношении можно заменить энергию фотонов hn кинетической энергией частиц kT , то есть знак неравенства означает следующее: частицы и соответствующие им античастицы возникали при материализации в раскаленном веществе до тех пор, пока температура вещества T не упала ниже значения.

                        

   На  начальном этапе расширения Вселенной  из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Поскольку аннигиляция может происходить при любой температуре, постоянно осуществляется процесс частица + античастица  Þ 2 гамма-фотона при условии соприкосновения вещества с антивеществом. Процесс материализации гамма-фотон Þ частица + античастица   мог протекать лишь при достаточно высокой температуре. Согласно тому, как материализация в результате понижающейся  температуры раскаленного вещества приостановилась.

   Эволюцию  Вселенной принято разделять  на четыре эры: адронную, лептонную, фотонную и звездную.

Адронная  эра

        Длилась примерно  от t=10-6 до  t=10-4. Плотность порядка 1017 кг/м3  при T=1012.1013.

   При очень высоких температурах и плотности в самом начале существования

   Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло прежде всего из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

   Через миллионную долю секунды с момента  рождения Вселенной, температура T упала на 10 биллионов Кельвинов(1013K). Средняя кинетическая энергия частиц kT и фотонов hn составляла около миллиарда эв (103 Мэв), что соответствует энергии покоя барионов. В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 1013 K фотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов - гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10-6 до 10-4 секунды.

   К моменту, когда возраст Вселенной  достиг одной десятитысячной секунды (10-4 с.), температура ее понизилась до 1012 K, а энергия частиц и

   фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10-4 с., в ней исчезли все мезоны. На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

Лептонная эра

        Длилась примерно от[5] t=10-4 до  t=101. К концу эры плотность порядка  107 кг/м.

   Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

   Лептонная эра начинается с распада последних  адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010 K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем «реликтовыми». Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

Фотонная  эра или эра  излучения

        Длилась примерно от t=10-6 до  t=10-4. Плотность порядка 1017 кг/м3 при T=1012.1013.

   На  смену лептонной эры пришла эра  излучения, как только температура  Вселенной понизилась до 1010 K , а энергия гамма фотонов достигла 1 Мэв,

   произошла только аннигиляция электронов и  позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества. Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

   Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hn всех фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.

   Вследствие  расширения Вселенной понижалась плотность  энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно «устают» со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em). Во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть Er = Em). Кончается эра излучения и вместе с этим период Большого взрыва. Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

   Большой взрыв продолжался сравнительно недолго, всего лишь одну тридцатитысячную  нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время Большого взрыва. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. Не следует забывать, в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

Звездная  эра

   После «большого  взрыва» наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается приблизительно 300 000 лет до наших дней. По сравнению с периодом Большого взрыва её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры. Таким образом, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной.

   Взрыв суперновой или гигантский взрыв  галактики - ничтожные явления в сравнении с Большим взрывом.

              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Глава 3. Теоретическая судьба Вселенной

   Долгосрочный  расчёт будущего Вселенной напрямую зависит от процесса расширения Вселенной: будет ли он бесконечно долго ускоряться, или скорость его расширения будет  постоянной на протяжении значительного  времени, или же в какой-то момент Вселенная начнет сжиматься. Считается, что это зависит от средней плотности Вселенной (т.н. критической плотности). Если плотность равна критической (вариант плоской Вселенной), то расширение идет с одинаковой скоростью, если больше, то Вселенная в конце концов схлопнется (вариант замкнутой Вселенной), если меньше то будет расширяться с всё большем ускорением, что в итоге приведет к Большому Разрыву (вариант открытой Вселенной).

   Сценарий  «Большого Разрыва»:

   Данные  по сверхновым Ia говорят, что в данный момент расширение Вселенной ускоряется, а значит, скорее всего, будет ускоряться и впредь. Следом за Ф. Адамс и Г. Лайфлин для более удобного описания будущего введем понятие космологической декады (η) - десятичный показатель степени возраста Вселенной в годах:

   τ = 10η лет

Эпоха звёзд

   Нынешняя  эпоха, эпоха активного рождения звёзд закончится ровно в тот  момент, когда галактики исчерпают  все запасы межзвёздного газа, в  это же время закончат свой путь и маломассивные звёзды - красные карлики - полностью исчерпав свои источники горения.

   Гораздо раньше потухнет Солнце. Но сначала  оно превратится в красный  гигант, поглотив Меркурий и Венеру. Земля же, если не разделит их судьбу, раскалится настолько, что будет  представлять собой сплошной сгусток  лавы. 
 

Эпоха распада

   Если  в предыдущей стадии основное население Вселенной это звёзды, подобные нашему Солнцу, то в эпоху распада - белые и коричневые карлики, и совсем немного нейтронных звёзд и чёрных дыр. Обычных звёзд нет вообще, они все дошли до конечного этапа своей эволюции: белые карлики, нейтронные звёзды, чёрные дыры.

   Если  в прошлой стадии горение водорода было самым распространённым процессом, то в эту эпоху его место  в коричневых карликах, да и идет гораздо-гораздо медленнее. Ныне главенствуют процессы аннигиляции тёмной материи  и распад протона.

   Галактики также сильно отличаются от нынешних: все звёзды уже неоднократно сталкивались друг с другом. Да и размер галактик значительно больше: все галактики, входящие в состав локального скопления, слились в одну.

Эпоха чёрных дыр

   На  этом этапе фактически всё вещество представляет собой море элементарных частиц. И лишь в некоторых уголках Вселенной продолжают жить нейтронные звёзды. На первую роль выходят чёрные дыры.

   За  предыдущие декады они аккрецировали  на себя вещество. В эту эпоху  они только излучают. Основных механизма тут два - столкновение двух чёрных дыр и последующее слияние высвобождают значительную гравитационную энергию, образуются гравитационные волны. Вторым механизмом является Излучение Хокинга: благодаря своей квантовой природе некоторым фотонам удаётся пробираться за горизонт событий. Вместе с фотоном чёрная дыра теряет и массу, а потеря массы ведет к ещё большему потоку фотонов. В какой-то момент гравитация больше не может удерживать фотоны света под горизонтом событий, и чёрная дыра взрывается, выкидывая последние остатки фотонов. 

   Однако  возможен и другой сценарий. Если Вселенная  открытая или плоская, то, подобно  современным галактикам, чёрные дыры могут образовывать свои скопления  и сверхскопления, и точно также  они будут сливаться. В итоге образуется гигантская чёрная дыра, которая будет жить фактически вечно. Возможно, под действием гравитации она разогреется до Планковской температуры и достигнет Планковской плотности и станет причиной очередного Большого взрыва, дав начало новой вселенной.

Эпоха вечной тьмы

   Это время уже без каких-либо источников энергии. Сохранились только остаточные продукты всех процессов, происходящих в прошлых декадах: фотоны с огромной длиной волны, нейтрино, электроны и  позитроны. Температура стремительно приближается к абсолютному нулю. Время от времени позитроны и электроны образуют неустойчивые атомы позитрония, долгосрочная судьба их - полная аннигиляция.

   Если  в эту эпоху Вселенная продолжает расширяться, то её дальнейшая судьба непредсказуема. Известная нам физика в этот момент времени уже не работает. Это ещё больше усиливает сходство с первыми мгновениями Большого взрыва: море элементарных частиц, высокая однородность и полная неприменимость современных законов физики.

Судьба Вселенной