Суперкомпьютеры. 2

 группа №511,Болгова Анастасия Вадимовна

 

Содержание

Введение..............................................................................................................3

Глава 1 Классифкация компьютеров  по областям применения.....................4

    1. Персональные компьтеры и рабочие станции.................................4
    2. X-терминалы......................................................................................8
    3. Серверы..................................................................................................11
    4. Мейнфреймы.....................................................................................15

Глава 2 Суперкомпьютеры...................................................................................18

2.1 Суперкомпьютер: понятие  и необходимости использования.....................18

2.2 Современные суперкомпьютеры...................................................................21

Заключение.....................................................................................................24

Список литературы........................................................................................25

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Н



а сегодняшний день информационные технологии и электронно-вычислительная техника играют очень большую роль в нашей жизни.

Но потребности общества растут практически с каждым днем, и, соответственно, уровень производительности компьютеров возрастает также быстро. За какие-то 50 лет производительность компьютеров возросла в несколько раз, да и это еще мягко сказано.

Какие-то 35 лет назад пределом технического совершенства был простейший калькулятор, и переход компании с арифмометра на «электронно-вычислительную технику» очень поднимал престиж организации. И никому и в голову не могло придти, что произойдет через пару десятилетий. Что через пару десятков лет компьютер, хотя и очень простой, будет стоять не только в каждой уважающей себя фирме, компании, офисе, предприятии, но и во многих квартирах. Что его можно будет использовать не только для решения сложнейших задач, но и для обучения, общения и развлечений.

И тем более никто и  не мог подумать о развитии электронно-вычислительной техники до того уровня, на котором она находится сегодня.

В ноябре 2008 года в Президиуме РАН состоялось открытие межведомственного  суперкомпьютерного центра. В процессе становления суперкомпьютерные  центры в Дубне, Черноголовке, Институте  прикладной математики им. М.В. Келдыша  и т.п.

Целью написание данной работы является изучение классификации компьютеров по областям применения и суперкомпьютеров.

Для написания работы использовалась научно-популярная литература, в том  числе интернет-ресурсы.

 

Глава 1 Классифкация компьютеров по областям применения

    1. Персональные компьтеры и рабочие станции

Персональные  компьютеры (ПК) появились в результате эволюции миникомпьютеров при переходе элементной базы машин с малой и средней степенью интеграции на большие и сверхбольшие интегральные схемы. ПК, благодаря своей низкой стоимости, очень быстро завоевали хорошие позиции на компьютерном рынке и создали предпосылки для разработки новых программных средств, ориентированных на конечного пользователя. Это прежде всего «дружественные пользовательские интерфейсы», а также проблемно-ориентированные среды и инструментальные средства для автоматизации разработки прикладных программ.1

Миникомпьютеры стали  прародителями и другого направления развития современных систем - 32-разрядных машин. Создание RISC-процессоров и микросхем памяти емкостью более 1 Мбит привело к окончательному оформлению настольных систем высокой производительности, которые сегодня известны как рабочие станции. Первоначальная ориентация рабочих станций на профессиональных пользователей (в отличие от ПК, которые в начале ориентировались на самого широкого потребителя непрофессионала) привела к тому, что рабочие станции - это хорошо сбалансированные системы, в которых высокое быстродействие сочетается с большим объемом оперативной и внешней памяти, высокопроизводительными внутренними магистралями, высококачественной и быстродействующей графической подсистемой и разно­образными устройствами ввода/вывода. Это свойство выгодно отличает рабочие станции среднего и высокого класса от ПК и сегодня. Даже наиболее мощные IBM PC совместимые ПК не в состоянии удовлетворить возрастающие потребности систем обработки из-за наличия в их архитектуре ряда «узких мест»2.

Тем не менее быстрый рост производительности ПК на базе новейших микропроцессоров Intel в сочетании  с резким снижением цен на эти  изделия и развитием технологии локальных шин (VESA и PCI), позволяющей  устранить многие «узкие места» в архитектуре ПК, делают современные персональные компьютеры весьма привлекательной альтернативой рабочим станциям. В свою очередь производители рабочих станций создали изделия так называемого «начального уровня»», которые по стоимостным характеристикам близки к высокопроизводительным ПК, но все еще сохраняют лидерство по производительности и возможностям наращивания. Насколько успешно удаться ПК на базе процессоров 486 и Pentium бороться против рабочих станций UNIX, покажет будущее, но уже в настоящее время появилось понятие «персональной рабочей станции», которое объединяет оба направления3.

Современный рынок  «персональных рабочих станций» не просто определить. По сути он представляет собой совокупность архитектурных платформ персональных компьютеров и рабочих станций, которые появились в настоящее время, поскольку поставщики компьютерного оборудования уделяют все большее внимание рынку продуктов для коммерции и бизнеса. Этот рынок традиционно считался вотчиной миникомпьютеров и мейнфреймов, которые поддерживали работу настольных терминалов с ограниченным интеллектом. В прошлом персональные компьютеры не были достаточно мощными и не располагали достаточными функциональными возможностями, чтобы служить адекватной заменой подключенных к главной машине терминалов. С другой стороны, рабочие станции на платформе UNIX были очень сильны в научном, техническом и инженерном секторах и были почти также неудобны, как и ПК для того чтобы выполнять серьезные офисные приложения. С тех пор ситуация изменилась коренным образом. Персональные компьютеры в настоящее время имеют достаточную производительность, а рабочие станции на базе UNIX имеют программное обеспечение, способное выполнять большинство функций, которые стали ассоциироваться с понятием «персональной рабочей станции». Вероятно оба этих направления могут серьезно рассматриваться в качестве сетевого ресурса для систем масштаба предприятия. В результате этих изменений практически ушли со сцены старомодные миникомпьютеры с их патентованной архитектурой и использованием присоединяемых к главной машине терминалов. По мере продолжения процесса разукрупнения (downsizing) и увеличения производительности платформы Intel наиболее мощные ПК (но все же чаще открытые системы на базе UNIX) стали использоваться в качестве серверов, постепенно заменяя миникомпьютеры.

Среди других факторов, способствующих этому процессу, следует выделить4:

    • применение ПК стало более разнообразным. Помимо обычных для этого класса систем текстовых процессоров, даже средний пользователь ПК может теперь работать сразу с несколькими прикладными пакетами, включая электронные таблицы, базы данных и высококачественную графику;
    • адаптация графических пользовательских интерфейсов существенно увеличила требования пользователей ПК к соотношению производительность/стоимость. И хотя оболочка MS Windows может работать на моделях ПК 386SX с 2 Мбайтами оперативной памяти, реальные пользователи хотели бы использовать все преимущества подобных систем, включая возможность комбинирования и эффективного использования различных пакетов;
    • широкое распространение систем мультимедиа прямо зависит от возможности использования высокопроизводительных ПК и рабочих станций с адеквантными аудио- и графическими средствами, и объемами оперативной и внешней памяти;
    • слишком высокая стоимость мейнфреймов и даже систем среднего класса помогла сместить многие разработки в область распределенных систем и систем клиент-сервер, которые многим представляются вполне оправданной по экономическим соображениям альтернативой. Эти системы прямо базируются на высоконадежных и мощных рабочих станциях и серверах.

В начале представлялось, что  необходимость сосредоточения высокой  мощности на каждом рабочем месте  приведет к переходу многих потребителей ПК на UNIX-станции. Это определялось частично тем, что RISC-процессоры, использовавшиеся в рабочих станциях на базе UNIX, были намного более производительными по сравнению с CISC-процессорами, применявшимися в ПК, а частично мощностью системы UNIX по сравнению с MS-DOS и даже OS/2.

Производители рабочих станций  быстро отреагировали на потребность  в низкосто­имостных моделях  для рынка коммерческих приложений. Потребность в высокой мощности на рабочем столе, объединенная с  желанием поставщиков UNIX-систем продавать  как можно больше своих изделий, привела такие компании как Sun Micro­systems и Hewlett Packard на рынок рабочих станций  для коммерческих приложений. И хотя значительная часть систем этих фирм все еще ориентирована на технические  приложения, наблюдается беспрецедентный  рост продаж продукции этих компаний для работы с коммерческими приложениями, требующими все большей и большей  мощности для реализации сложных, сетевых  прикладных систем, включая системы  мультимедиа.

Это привело к временному отступлению производителей ПК на базе микропроцессоров Intel. Острая конкуренция со стороны производителей UNIX-систем и потребности в повышении производительности огромной уже инсталлированной базы ПК, заставили компанию Intel форсировать разработку высокопроизводительных процессоров семейства 486 и Pentium. Процессоры 486 и Pentium, при разработке которого были использованы многие подходы, применявшиеся ранее только в RISC-процессорах, а также использование других технологических усовершенствований, таких как архитектура локальной шины, позволили снабдить ПК достаточной мощностью, чтобы составить конкуренцию рабочим станциям во многих направлениях рынка коммерческих приложений. Правда для многих других приложений, в частности, в области сложного графического моделирования, ПК все еще сильно отстают.

    1. X-терминалы

X-терминалы представляют  собой комбинацию бездисковых  рабочих станций и стандартных  ASCII-терминалов. Бездисковые рабочие  станции часто применялись в  качестве дорогих дисплеев и  в этом случае не полностью  использовали локальную вычислительную  мощь. Одновременно многие пользователи ASCII-терминалов хотели улучшить их характеристики, чтобы получить возможность работы в многооконной системе и графические возможности. Совсем недавно, как только стали доступными очень мощные графические рабочие станции, появилась тенденция применения «подчиненных» Х-терминалов, которые используют рабочую станцию в качестве локального сервера5.

На компьютерном рынке  Х-терминалы занимают промежуточное  положение между персональными  компьютерами и рабочими станциями. Поставщики Х-терминалов заявляют, что  их изделия более эффективны в  стоимостном выражении, чем рабочие  станции высокого ценового класса, и предлагают увеличенный уровень производительности по сравнению с персональными компьютерами. Быстрое снижение цен, прогнозируемое иногда в секторе Х-терминалов, в настоящее время идет очевидно благодаря обострившейся конкуренции в этом секторе рынка. Многие компании начали активно конкурировать за распределение рынка, а быстрый рост объемных поставок создал предпосылки для создания такого рынка. В настоящее время уже достигнута цена в $1000 для Х-терминалов начального уровня, что делает эту технологию доступной для широкой пользовательской базы.

Как правило, стоимость Х-терминалов составляет около половины стоимости  сравнимой по конфигурации бездисковой  машины и примерно четверть стоимости  полностью оснащенной рабочей станции.

Что такое X-терминал? Типовой X-терминал включает следующие элементы6:

- экран высокого разрешения - обычно размером от 14 до21 дюйма по диагонали;

- микропроцессор на базе Motorola 68xxx или RISC-процессор типа Intel i960, MIPS R3000 или AMD29000;

- отдельный графический сопроцессор в дополнение к основному процессору, поддерживающий двухпроцессорную архитектуру, которая обеспечивает более быстрое рисование на экране и прокручивание экрана;

- базовые системные программы, на которых работает система X-Windows и выполняются сетевые протоколы;

- программное обеспечение сервера XII;

- переменный объем локальной памяти (от 2 до 8 Мбайт) для дисплея, сетевого интерфейса, поддерживающего TCP/IP и другие сетевые протоколы;

- порты для подключения клавиатуры и мыши.

Х-терминалы отличаются от ПК и рабочих станций не только тем, что не выполняет функции  обычной локальной обработки. Работа Х-терминалов зависит от главной (хост) системы, к которой они подключены посредством сети. Для того, чтобы X-терминал мог работать, пользователи должны инсталлировать программное обеспечение многооконного сервера XII на главном процессоре, выполняющим прикладную задачу (наиболее известная версия XII Release 5). X-терминалы отличаются также от стандартных алфавитно-цифровых ASCII и традиционных графических дисплейных терминалов тем, что они могут быть подключены к любой главной системе, которая поддерживает стандарт X-Windows. Более того, локальная вычислительная мощь Х-терминала обычно используется для обработки отображения, а не обработки приложений (называемых клиентами), которые выполняются удаленно на главном компьютере (сервере). Вывод такого удаленного приложения просто отображается на экране Х-терминала.

Минимальный объем требуемой  для работы памяти Х-терминала составляет 1 Мбайт, но чаще 2 Мбайта. В зависимости  от функциональных возможностей изделия  оперативная память может расширяться  до 32 Мбайт и более7.

Оснащенный стандартной  системой X-Windows, X-терминал может отображать на одном и том же экране множество  приложений одновременно. Каждое приложение может выполняться в своем  окне и пользователь может изменять размеры окон, их месторасположение  и манипулировать ими в любом  месте экрана.

X-Windows - результат совместной  работы Массачусетского технологического института (MIT) и корпорации DEC. Система X-Windows (известная также под именем X) в настоящее время является открытым дефакто стандартом для доступа к множеству одновременно выполняющихся приложений с возможностями многооконного режима и графикой высокого разрешения на интеллектуальных терминалах, персональных компьютерах, рабочих станциях и Х-терминалах8. Она стала стандартом для обеспечения интероперабельности (переносимости) продуктов многих поставщиков и для организации доступа к множеству приложений. В настоящее время X-Windows является стандартом для разработки пользовательского интерфейса. Более 90% по­ставщиков UNIX-рабочих станций и многие поставщики персональных компьютеров адаптировали систему X-Windows и применяют в качестве стандарта.

1.3 Серверы

Прикладные многопользовательские  коммерческие и бизнес-системы, включающие системы управления базами данных и  обработки транзакций, крупные издательские системы, сетевые приложения и системы  обслуживания коммуникаций, разработку программного обеспечения и обработку  изображений все более настойчиво требуют перехода к модели вычислений «клиент-сервер» и распределенной обработке. В распределенной модели «клиент-сервер» часть работы выполняет сервер, а часть пользо­вательский компьютер (в общем случае клиентская и пользовательская части могут работать и на одном компьютере). Существует несколько типов серверов, ориентированных на разные применения: файл-сервер, сервер базы данных, принт-сервер, вычислительный сервер, сервер приложений. Таким образом, тип сервера определяется видом ресурса, которым он владеет (файловая система, база данных, принтеры, процессоры или прикладные пакеты программ)9.

С другой стороны существует классификация серверов, определяющаяся масштабом сети, в которой они  используются: сервер рабочей группы, сервер отдела или сервер масштаба предприятия (корпоративный сервер). Эта классификация весьма условна. Например, размер группы может меняться в диапазоне от нескольких человек  до нескольких сотен человек, а сервер отдела обслуживать от 20 до 150 пользователей. Очевидно в зависимости от числа  пользователей и характера решаемых ими задач требования к составу  оборудования и программного обеспечения сервера, к его надежности и производительности сильно варьируются.

Файловые серверы небольших  рабочих групп (не более 20-30 человек) проще всего реализуются на платформе  персональных компьютеров и программном  обеспечении Novell NetWare. Файл-сервер, в  данном случае, выполняет роль центрального хранилища данных. Серверы прикладных систем и высокопроизводительные машины для среды «клиент-сервер» значительно отличаются требованиями к аппаратным и про­граммным средствам.

Типичными для небольших  файл-серверов являются: процессор 486DX2/66 или более быстродействующий, 32-Мбайт  ОЗУ, 2 Гбайт дискового пространства и один адаптер Ethernet lOBaseT, имеющий  быстродействие 10 Мбит/с. В состав таких  серверов часто включаются флоппи-дисковод и дисковод компакт-дисков. Графика  для большинства серверов несущественна, поэтому достаточно иметь обычный  монохромный монитор с разрешением VGA.

 

Скорость процессора для  серверов с интенсивным вводом/выводом  некритична. Они должны быть оснащены достаточно мощными блоками питания  для возможности установки дополнительных плат расширения и дисковых накопителей. Желательно применение устройства бесперебойного питания. Оперативная память обычно имеет объем не менее 32 Мбайт, что  позволит операционной системе (например, NetWare) использовать большие дисковые кэши и увеличить производительность сервера. Как правило, для работы с многозадачными операционными  системами такие серверы оснащаются интерфейсом SCSI (или Fast SCSI). Распределение данных по нескольким жестким дискам может значительно повысить производительность10.

При наличии одного сегмента сети и 10-20 рабочих станций пиковая  пропускная способность сервера  ограничивается максимальной пропускной способностью сети. В этом случае замена процессоров или дисковых подсистем более мощными не увеличивают производительность, так как узким местом является сама сеть. Поэтому важно использовать хорошую плату сетевого интерфейса.

Хотя влияние более  быстрого процессора явно на производительности не сказывается, оно заметно снижает коэффициент использования ЦП. Во многих серверах этого класса используется процессоры 486DX2/66, Pentium с тактовой частотой 60 и 90 МГц, microSPARC-II и PowerPC. Аналогично процессорам влияние типа системной шины (EISA со скоростью 33 Мбит/с или PCI со скоростью 132 Мбит/с) также минимально при таком режиме использования.

Однако для файл-серверов общего доступа, с которыми одновременно могут работать несколько десятков, а то и сотен человек, простой  однопроцессорной платформы и программного обеспечения Novell может оказаться  недостаточно. В этом случае используются мощные многопроцессорные серверы с возможностями наращивания оперативной памяти до нескольких гигабайт, дискового пространства до сотен гигабайт, быстрыми интерфейсами дискового обмена (типа Fast SCSI-2, Fast&Wide SCSI-2 и Fi­ber Channel) и несколькими сетевыми интерфейсами. Эти серверы используют операционную систему UNIX, сетевые протоколы TCP/IP и NFS. На базе многопроцессорных UNIX-серверов обычно строятся также серверы баз данных крупных информационных систем, так как на них ложится основная нагрузка по обработке информационных запросов. Подобного рода серверы получили название суперсерверов.

По уровню общесистемной  производительности, функциональным возможностям отдельных компонентов, отказоустойчивости, а также в поддержке многопроцессорной  обработки, системного администрирования  и дисковых массивов большой емкости суперсерверы вышли в настоящее время на один уровень с мейнфреймами и мощными миникомпьютерами. Современные суперсерверы характеризуются11:

        • Наличием двух или более центральных процессоров RISC, либо Pentium, либо Intel 486;
      • Многоуровневой шинной архитектурой;
    • Поддержкой технологии дисковых массивов RAID;
  • Поддержкой режима симметричной иногопроцессорной обработки.

Как правило, суперсерверы работают под управлением операционных систем UNIX, а в последнее время и Windows NT (на Digital 2100 Server Model A500MP), которые обеспечивают многопотоковую многопроцессорную  и многозадачную обработку. Суперсерверы должны иметь достаточные возможности  наращивания дискового пространства и вычислительной мощности, средства обеспечения надежности хранения данных и защиты от несанкционированного доступа. Кроме того, в условиях быстро растущей организации, важным условием является возможность наращивания и расширения уже существующей системы12.

1.4 Мэйнфреймы

М



ейнфрейм - это синоним  понятия «большая универсальная ЭВМ». Мейнфреймы и до сегодняшнего дня остаются наиболее мощными (не считая суперкомпьютеров) вычислительными системами общего назначения, обеспечивающими непрерывный круглосуточный режим эксплуатации. Они могут включать один или несколько процессоров, каждый из которых, в свою очередь, может оснащаться векторными сопроцессорами (ускорителями операций с суперкомпьютерной производительностью). В нашем сознании мейнфреймы все еще ассоциируются с большими по габаритам машинами, требующими специально оборудованных помещений с системами водяного охлаждения и кондиционирования. Однако это не совсем так. Прогресс в области элементно-конструкторской базы позволил существенно сократить габариты основных устройств. Наряду со сверхмощными мейнфреймами, требующими организации двухконтурной водяной системы охлаждения, имеются менее мощные модели, для охлаждения которых достаточно принудительной воздушной вентиляции, и модели, построенные по блочно-модульному принципу и не требующие специальных помещений и кондиционеров13.

Основными поставщиками мейнфреймов  являются известные компьютерные компании IBM, Amdahl, ICL, Siemens Nixdorf и некоторые другие, но ведущая роль принадлежит безусловно компании IBM. Именно архитектура системы IBM/360, выпущенной в 1964 году, и ее последующие  поколения стали образцом для  подражания. В нашей стране в течение  многих лет выпускались машины ряда ЕС ЭВМ, являвшиеся отечественным аналогом этой системы14.

В архитектурном плане  мейнфреймы представляют собой многопроцессорные системы, содержащие один или несколько центральных и периферийных процессоров с общей памятью, связанных между собой высокоскоростными магистралями передачи данных. При этом основная вычислительная нагрузка ложится на центральные процессоры, а периферийные процессоры (в терминологии IBM - селекторные, блок-мультиплексные, мультиплексные каналы и процессоры телеобработки) обеспечива­ют работу с широкой номенклатурой периферийных устройств.

Первоначально мейнфреймы ориентировались  на централизованную модель вычислений, работали под управлением патентованных операционных систем и имели ограниченные возможности для объединения в единую систему оборудования различных фирм-поставщиков. Однако повышенный интерес потребителей к открытым системам, построенным на базе международных стандартов и позволяющим достаточно эффективно использовать все преимущества такого подхода, заставил поставщиков мейнфреймов существенно расширить возможности своих операционных систем в направлении совместимости. В настоящее время они демонстрирует свою «открытость», обеспечивая соответствие со спецификациями POSIX 1003.3, возможность использования протоколов межсоединений OSI и TCP/IP или предоставляя возможность работы на своих компьютерах под управлением операционной системы UNIX собственной разработки.

Стремительный рост производительности персональных компьютеров, рабочих  станций и серверов создал тенденцию  перехода с мейнфреймов на компьютеры менее дорогих классов: миникомпьютеры и многопроцессорные серверы. Эта  тенденция получила название «разукрупнение» (downsizing). Однако этот процесс в самое последнее время несколько замедлился. Основной причиной возрождения интереса к мейнфреймам эксперты считают сложность перехода к распределенной архитектуре клиент-сервер, которая оказалась выше, чем предполагалось. Кроме того, многие пользователи считают, что распределенная среда не обладает достаточной надежностью для наиболее ответственных приложений, которой обладают мейнфреймы.

Очевидно выбор центральной  машины (сервера) для построения информационной системы предприятия возможен только после глубокого анализа проблем, условий и требований конкретного  заказчика и долгосрочного прогнозирования  развития этой системы.

Главным недостатком мейнфреймов  в настоящее время остается относительно низкое соотношение производительность/стоимость. Однако фирмами-поставщиками мейнфреймов  предпринимаются значительные усилия по улучшению этого показателя15.

Следует также помнить, что  в мире существует огромная инсталлированная база мейнфреймов, на которой работают десятки тысяч прикладных программных систем. Отказаться от годами наработанного программного обеспечения просто не разумно. Поэтому в настоящее время ожидается рост продаж мейнфреймов по крайней мере до конца этого столетия. Эти системы, с одной стороны, позволят модернизировать существующие системы, обеспечив сокращение эксплуатационных расходов, с другой стороны, создадут новую базу для наиболее ответственных приложений.

 

 

 

 

 

Глава 2 Суперкомпьютеры

2.1 Суперкомпьютер: понятие и необходимости использования

Считается, что супер-ЭВМ - это компьютеры с максимальной производительностью16.

Однако быстрое развитие компьютерной индустрии делает это  понятие весьма и весьма относительным: то, что десять лет назад можно было назвать суперкомпьютером, сегодня под это определение уже не подпадает.

Производительность первых супер-ЭВМ начала 70-х годов была сравнима с производительностью современных ПК на базе традиционных процессоров Pentium.

По сегодняшним меркам ни те, ни другие к суперкомпьютерам, конечно же, не относятся.

В любом компьютере все  основные параметры взаимосвязаны. Трудно себе представить универсальный компьютер, имеющий высокое быстродействие и мизерную оперативную память либо огромную оперативную память и небольшой объем дисков. Отсюда простой вывод: супер-ЭВМ (рис. 1) - это компьютер, имеющий не только максимальную производительность, но и максимальный ли объем оперативной и дисковой памяти и совокупности со специализированным программным обеспечением, с помощью которого этим монстром можно эффективно пользоваться17.

Рисунок 1 - Суперкомпьютер

Суперкомпьютерам  не раз пытались давать универсальные определения – иногда они получались серьезными, иногда ироничными. Например, как-то предлагалось считать суперкомпьютером машину, вес которой превышает одну тонну. Несколько лет назад был предложен и такой вариант: суперкомпьютер - это устройство, сводящее проблему вычислений к проблеме ввода/вывода. В самом деле, задачи, которые раньше вычислялись очень долго, на супер-ЭВМ выполняются мгновенно, и почти все время теперь уходит на более медленные процедуры ввода и вывода данных, производящиеся, как правило, с прежней скоростью.

Суперкомпьютеры. 2