Краун-эфиры

План:

1.Введение

2.Нуменклатура краун-эфиров

3.Свойства краун-эфиров

4.Получение краун-эфиров

5.Применение

6.Заключение

7. Список использованной литературы

 

 

Федеральное Государственное образовательное Учреждение Высшего Профессионального Образования «Московская Государственная Академия Ветеринарной Медицины и                  Биотехнологии им. К.И.Скрябина»

 

 

 

 

 

 

Реферат по дисциплине биополимеры

На тему: «Краун-эфиры»

 

 

 

                                                                                      Выполнила:

                                                                                   Студентка I курса ВБФ группы №2 

Харлампиева Ксения  

    Проверила:

доцент кафедры  химии

Фролова Л.А.

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Москва, 2012

 

Введение

 

В 1960-е гг. были найдены  необычные сольватирующие растворители, получившие название "краун-эфиры" из-за изящной коронообразной формы их молекул. Это циклические соединения с чередующимися атомами кислорода и этиленовыми мостиками. Все атомы кислорода как бы выведены из плоскости цикла и ориентированы в одну сторону, что очень облегчает их последующее полярное взаимодействие с катионом металла. Для простоты краун-эфир обычно изображают в виде плоского цикла, в середине которого находится сольватированный катион металла:

Наиболее ценное свойство этих соединений следующее: краун-эфиры, различающиеся величиной цикла, оказываются очень точно "настроенными" на катион определенного размера и избирательно сольватируют ион соответствующего металла.

Краун-эфиры (краун-соединения) — макрогетероциклические соединения, содержащие в своих циклах более 11 атомов, из которых не менее четырёх — гетероатомы, которые связаны между собой этиленовыми мостиками.

Как правило, гетероатомом является атом кислорода. Если один или несколько атомов кислорода заменены атомами азота или серы, то соответствующие соединения называются соответственно азакраун- или тиакраун-эфирами. Если краун-эфиры конденсированы с бензольными или циклогексановыми кольцами, то они относятся к бензокраун- или циклогексанкраун-эфирам. Получены краун-эфиры, содержащие в цикле атомы P, Si, As, а также амидные, сложноэфирные и некоторые другие функциональные группы.

   
                                                                    

 

 

Рис.1 Образование краун-эфира - комплекса 18-краун-6 и иона K+ (в центре).

 

2. Номенклатура краун-эфиров

 

Краун-эфиры макрогетероциклические соединения, содержащие в цикле свыше 11 атомов, из которых не менее 4 - гетероатомы, связанные между собой этиленовыми мостиками; являются полидентатными лигандами в комплексах с катионами металлов. Форма таких молекул напоминает корону, что и определило их название (англ. crown - корона). Структура простейшего краун-эфира представлена формулой I. Если один или несколько атомов кислорода краун-эфира заменены атомами N или S, соответствующие соединения называются азакраун - или тиакраун-эфирами. Краун-эфиры, конденсированные с одним или несколько бензольными или циклогексановыми кольцами, называют соответственно бензокраун - и циклогексанокраун-эфирами (ф-лы IV и V). Известны также краун-соединения, содержащие в цикле гетероатомы Р, Si, As или другие амидные, сложноэфирные или другие функциональные группы.

 

 

Формально все краун-эфиры можно отнести к классу гетероциклических соединений, однако необычные свойства таких соединений позволили выделить их в самостоятельный класс, в связи с чем для составления названий были предложены специальные правила. Название содержит слово "краун", цифра перед этим словом обозначает общее число атомов в цикле, а цифра в конце названия указывает на количество гетероатомов O, N и S (рис.1). В названии не указывают наличие в цикле атомов О (это подразумевается), но если в цикле есть иные гетероатомы (кроме кислорода), например, азот или сера, то их количество указывают, добавляя к названию приставки ди - или три-, а положение в цикле - с помощью числовых индексов, предварительно нумеруются все атомы в цикле.

В тривиальных названиях  краун-эфирах общее число атомов в цикле и число гетероатомов обозначают цифрами, которые ставят соответственно перед и после слова "краун", например 12-краун-4 (ф-ла I), 1,10-диаза-18-краун-6 (И), 1,7-дитиа-15-краун-5 (III), дибензо-18-краун-6 (IV), циклогексано-15-краун-5 (V). Такие названия однозначно не определяют структурную формулу соединения. По номенклатуре ИЮПАК. соединения I и II называются соответственно 1,4,7,10,13-тетра-оксациклододекан и 1,4, 10,13-тетраокса-7,16-диаза-циклооктадекан.

 

Рис.2. СОСТАВЛЕНИЕ НАЗВАНИЙ ДЛЯ КРАУН-ЭФИРОВ

 

3. СВОЙСТВА КРАУН-ЭФИРОВ

 

Краун-эфиры - вязкие жидкости или кристаллические вещества; хорошо растворимые в большинстве органических растворителей, слабо - в воде.12-граун-4, 15-краун-5 и азакраун-эфиры хорошо растворимы в воде. Химические свойства определяются природой гетероатома и функциональных групп в молекуле.

Краун-эфиры содержат фрагмент С-О-С, характерный для простых эфиров, а также могут включать фрагменты амина C-NH-C, или тиоэфира C-S-C. Характерное свойство этих классов соединений - образовывать комплексы за счет неподеленных электронных пар кислорода, азота и серы. Это свойство многократно усилено в краун-эфирах из-за большого числа гетероатомов в цикле, к тому же неподеленные электронные пары ориентированы внутрь цикла. В результате ионы щелочных и щелочноземельных металлов входят внутрь цикла, образуя прочные комплексы.

 

 

Меняя величину цикла и, соответственно, размер внутренней полости, можно точно  настроить краун-эфир на удерживание катиона определенного размера, например, 12-краун-4 (рис.2) наиболее прочно захватывает катион лития, 15-краун-5 соответствует по размеру катиону натрия, а 18-краун-6 "подходит по размеру" катиону калия (рис.3).

 


Рис.3. КОМПЛЕКСЫ КРАУН-ЭФИРОВ с катионами щелочных металлов (пунктирными линиями показаны координационные связи)

 

 

 

 

 

 

У краун-эфиров склонность к "захвату" катионов выражена настолько сильно, что даже если катион не соответствует по размеру внутренней полости цикла, то все равно оказываются возможными варианты, при которых катион все же удерживаеся. Например, если катион по размеру много больше внутренней полости, то он может окружить себя двумя молекулами краун-эфира, образуя подобие бутерброда (рис.4А) если же ситуация обратная, то внутрь молекулы краун-эфира может поместиться два катиона

 

 

Подобные комплексы менее  устойчивы, чем те, у которых размер катиона точно соответствует  величине внутренней полости.

Краун-эфиры образуют устойчивые липофильные комплексы с катионами металлов, в основном щелочных и щелочно-земельных. При этом катион включается во внутримолекулярную полость краун-эфира и удерживается там благодаря ион-дипольному взаимодействую со всеми гетероатомами. Наиболее устойчивы комплексы с катионами, геометрические параметры которых соответствуют полости краун-эфира (табл.). Растворимость соединений, катион которого попадает в полость краун-эфира, возрастает, что позволяет солюбилизировать соли щелочных и щелочноземельных металлов в малополярных растворителях. Анион в растворе слабо сольватирован, что приводит к росту его нуклеофильности и основности. Краун-эфиры способны экстрагировать соли металлов и некоторые органические соединения (амины, аминокислоты и др.) из водной фазы в органическую и осуществлять их транспорт через жидкие мембраны. Биологическая активность краун-эфиров обусловлена их влиянием на ионную и субстратную проницаемость биологических мембран, а также на ферментные системы.

Краун-эфиры проявляют психотропную, кардиотропную, противомикробную и противопаразитарную активность, обеспечивают выведение тяжелых металлов из организма.

4. Получение краун-эфиров

 

Краун-эфиры получают конденсацией дигалогеналканов или диэфиров п-толуолсульфокислоты с полиэтиленгликолями в тетрагидрофуране, 1,4-диоксане, диметоксиэтане, диметилсульфоксиде, трет-бутаноле в присутствии оснований (гидриды, гидроксиды, карбонаты); внутримолекулярной циклизацией монотозилатов полиэтиленгликолей в диоксане, диглиме или тетрагидрофуране в присутствии гидроксидов щелочных металлов, а также циклоолигомеризацией этиленоксида в присутствии BF3 и борофторидов щелочных и щелочноземельных металлов.

Азакраун-эфиры получают ацилированием ди- или полиаминов с частично защищёнными аминогруппами хлорангидридами дикарбоновых кислот с последующим восстановлением образующихся макроциклических диамидов; алкилированием дитозилдиаминов дигалогенпроизводными или дитозилатами гликолей в присутствии гидридов или гидроксидов щелочных металлов.

Тиакраун-эфиры получают из тиааналогов полиэтиленгликолей аналогично обычным краун-эфирам или алкилированием дитиолов дигалогенидами или дитозилатами в присутствии оснований.

 

 

 

5. Применение краун-эфиров

 

Применение краун-эфиров определяется, прежде всего, их избирательной способностью захватывать катионы определенного размера. Наибольшее распространение получили краун-эфиры, содержащие только гетероатомы О. Их применяют в технологических процессах, связанных с выделением и очисткой солей щелочных и щелочноземельных металлов, в аналитических исследованиях и работах, связанных с синтезом, когда нужно перевести неорганические соединения из водной фазы в органическую среду.

Краун-эфиры обладают противомикробной и противопаразитарной активностью, кроме того, из организма с их помощью выводятся ионы токсичных тяжелых металлов, а также радиоактивных изотопов цезия и стронция.

В радиохимии краун-эфиры помогают решать проблему переработки отходов ядерных производств. Первый этап - удаление с помощью краун-эфиров из переработанного ядерного горючего наиболее активных изотопов (стронций-90, цезий-137, технеций-99), на этой стадии предпочтительны S-содержащие краун-эфиры, поскольку они обладают повышенной радиационной стойкостью. Извлеченные изотопы используются затем в установках радиодиагностики, заменяющих рентгеновские аппараты, а также при создании долговременных источников тока для метеостанций, метеозондов и космических аппаратов. Следующий этап переработки ядерного топлива - извлечение с помощью краун-эфиров (специально подобранного состава) неизрасходованных урана и плутония, после чего объем подлежащих утилизации отходов становятся заметно меньше и к тому же отходы обладают слабой радиоактивностью.

Краун-эфиры открыли новые горизонты в синтетической органической химии, с их помощью оказалось возможным вводить в растворенном виде (т.е. гомогенно), неорганические реагенты в органическую среду. Например, широко применяемый окислитель перманганат калия KMnO4 практически нерастворим в органических растворителях, но в присутствии 18-краун-6 он легко растворяется в бензоле, приобретая при этом высокую окисляющую способность. Причина в том, что в водном растворе анионы MnO4-, осуществляющие окисление, окружены водной сольватной оболочкой, а в бензольном растворе они как бы обнажены и потому высокоактивны.

Очень эффектно применение краун-эфиров в создании принципиально новых материалов. Известно, что щелочные металлы достаточно легко растворяются в жидком аммиаке (tкип. = - 36°С). Как и в случае растворения большинства неорганических соединений, при этом происходит сольватация ионов. Возникающий в растворе катион хорошо известен - это Na+. А вот анион необычный - сольватированный аммиаком электрон е-.

 

Na0 + (n + m) NH3 (ж.) = Na+ (NH3) n + е- (NH3) m.

 

При длительном хранении такого раствора натрий реагирует с аммиаком, образуя амид натрия NaNH2. Если из этого раствора сразу удалить весь аммиак (он легко удаляется при комнатной температуре), то электрон вернется к иону натрия и получим исходный металлический натрий.

Теперь заменим аммиак на такой краун-эфир, который хорошо сольватирует именно катион натрия. Добавим в раствору натрия в аммиаке соответствующий краун-эфир в количестве, точно соответствующем количеству ионов натрия в растворе, а аммиак при комнатной температуре испарим. Теперь электрон не может вернуться к натрию, т.к. катион Na+ надежно укрыт краун-эфиром. В итоге получим вещество, в кристаллической решетке которого располагаются ионы натрия, защищенные краун-эфиром, а в межкристаллическом пространстве находятся свободные несольватированные электроны (краун-эфир сольватирует только частицы с положительным зарядом):

 

 

На первый взгляд это строение типичного ионного соединения, в  узлах кристаллической решетки  которого располагаются катионы  и анионы, как, например, в случае NaCl. Так оно и есть, но электрон совсем не то же самое, что анион хлора. Благодаря исключительно малым размерам электроны в таком соединении могут свободно перемещаться в межкристаллическом пространстве. По этой причине вещества такого типа обладают довольно высокой электропроводностью, подобной металлам. Все это довольно необычно. Ионное соединение, обладающее электропроводностью металлического типа. Описанные соединения получили название "электриды".

краун эфир сольватирующий растворитель

Заключение

 

Появление краун-эфиров заметно расширило возможности экспериментальной химии. Стало возможным переводить в органическую среду типичные неорганические соединения и проводить с ними различные реакции.

 

Список использованной литературы:

 

1. Хараока М. Краун-соединения. М., Мир, 1986.363

2. Давыдова С.Л. Удивительные макроциклы. Л., 1989

3. Овчинников Ю.А., Иванов В.Т., Шкроб А.М., Мембранно-активные комплексены, М., 1974;

4. Химия комплексов "гость-хозяин". Под ред.Ф. Фегтле, Э. Вебера. - М.: Мир, 1988.511с.

5. Лен Ж. супрамолекулярная химия-масштабы и перспективы. Нобелевская лекция. - М. №2. с.3-36

Размещено на Allbest.ru


Краун-эфиры