Выполненные решения заданий и задач. 8

331
2022г Вариант 13 - ДЗ - Определение УЗД Зачетно на максимальный баллВариант 13 - ДЗ - Определение УЗДУсловие Определить УЗД (уровни звукового давления) в расчетной точке при заданных уровнях звуковой мощности источников (Lp=f(fсг)) (источники ненаправленные), указанном расположении расчетной точки относительно источников шума, габаритных размерах промышленного помещения. Максимальный габарит любого источника много меньше расстояния до расчетной точки. Полученные данные сравнить с нормативными значениями (СН 2.2.4/2.1.8.562-96). Построить расчетный и предельный спектры. Сделать выводы о необходимости защитных мероприятий. Предложить защитные мероприятия.Примечание: постоянную помещения В определить в соответствии с назначением помещения и его объемом по СНиП II-12-77ВариантСхема расположения расчетной точки относительно источников шума (приложение 1)Расположение источников в пространствеРасстояния от источника до расчетной точки, мУровни звуковой мощности источников,(Lp=f(fсг))(приложение 2)Габаритные размеры промышленного помещения, А*В*С, м313Схема 1Все на полуR1=8R2=4R3=71 - 102 - 13 - 210х20х5Схема расположения расчетной точки относительно источников шума в помещении.Уровни звуковой мощности источников шума:№, п/п ,дБ631252505001000200040008000190919899979391862848284919494919138084838784829496                               
333
2022г Вариант 14 - ДЗ №1 + ДЗ №2 - Динамика материальной точки - Динамика вращательного движения Защищено в сумме на 20 из 20 возможных баллов Условие: Гладкая частица сферической формы массой m, которую можно рассматривать как материальную точку, ударяется со скоростью  о гладкую массивную преграду, которая движется со скоростью  . Угол, образованный векторами  и  ,  равен . Массу преграды считать бесконечной. На рис. 5, 6 преграда имеет форму плоской стенки, на рис.7 – форму острого конуса с углом раствора γ, а на рис. 8 – форму конуса сферической головной частью радиусом R. Удар частицы о сферическую поверхность происходит в точке А, расположенной под углом γ относительно оси преграды. При этом АО = R. Виды взаимодействия: а) абсолютно упругий удар (АУУ); б) неупругий удар (НУУ); в) абсолютно неупругий удар (АНУУ). Обозначения:  - конечная скорость частицы после удара; αк - угол, образованный векторами  и  ;  - изменение вектора скорости частицы за время удара;  - изменение модуля импульса частицы за время удара; ΔE - изменение кинетической энергии частицы за время удара; F - модуль средней силы, с которой частица действует на стенку во время удара; F.Δt - модуль импульса силы, который за время удара Δt частица передаёт стенке;  - энергия деформирования частицы при ударе, выраженная через её начальную кинетическую энергию, где  - безразмерный коэффициент. Однородный жёсткий вертикальный стержень длиной l=1 м и М=1 кг, движущийся поступательно в плоскости рисунка с постоянной горизонтальной скоростью V0, налетает на край массивной преграды (рис. 1). После удара стержень вращается вокруг оси O перпендикулярной плоскости рисунка. Ось вращения стержня совпадает с ребром преграды и проходит через точку контакта стержня с преградой, так что точка контакта лежит выше центра тяжести стержня (рис. 14). Потерями механической энергии при вращении стержня после удара пренебречь. Другие обозначения: l1 – расстояние от верхнего конца стержня до точки контакта; ω0 – угловая скорость стержня сразу после удара о ребро преграды; V0m – минимальная горизонтальная скорость стержня, а ω0m – соответственно минимальная угловая скорость стержня, при которой он после удара способен коснуться горизонтальной поверхности преграды; φm – максимальный угол поворота стержня после удара; ωК – угловая скорость стержня в момент его удара о горизонтальную поверхность преграды. Расчет следует начинать с определения характерной скорости V0m
334
2022г Вариант 14 - ДЗ №1 - Динамика материальной точки Зачтено на максимальный баллУсловие: Гладкая частица сферической формы массой m, которую можно рассматривать как материальную точку, ударяется со скоростью  о гладкую массивную преграду, которая движется со скоростью  . Угол, образованный векторами  и  ,  равен . Массу преграды считать бесконечной. На рис. 5, 6 преграда имеет форму плоской стенки, на рис.7 – форму острого конуса с углом раствора γ, а на рис. 8 – форму конуса сферической головной частью радиусом R. Удар частицы о сферическую поверхность происходит в точке А, расположенной под углом γ относительно оси преграды. При этом АО = R. Виды взаимодействия: а) абсолютно упругий удар (АУУ); б) неупругий удар (НУУ); в) абсолютно неупругий удар (АНУУ). Обозначения:  - конечная скорость частицы после удара; αк - угол, образованный векторами  и  ;  - изменение вектора скорости частицы за время удара;  - изменение модуля импульса частицы за время удара; ΔE - изменение кинетической энергии частицы за время удара; F - модуль средней силы, с которой частица действует на стенку во время удара; F.Δt - модуль импульса силы, который за время удара Δt частица передаёт стенке;  - энергия деформирования частицы при ударе, выраженная через её начальную кинетическую энергию, где  - безразмерный коэффициент.
342
2022г Вариант 14 - ДЗ №2 - Динамика вращательного движения Зачтено на максимальный баллОднородный жёсткий вертикальный стержень длиной l=1 м и М=1 кг, движущийся поступательно в плоскости рисунка с постоянной горизонтальной скоростью V0, налетает на край массивной преграды (рис. 1). После удара стержень вращается вокруг оси O перпендикулярной плоскости рисунка. Ось вращения стержня совпадает с ребром преграды и проходит через точку контакта стержня с преградой, так что точка контакта лежит выше центра тяжести стержня (рис. 14). Потерями механической энергии при вращении стержня после удара пренебречь. Другие обозначения: l1 – расстояние от верхнего конца стержня до точки контакта; ω0 – угловая скорость стержня сразу после удара о ребро преграды; V0m – минимальная горизонтальная скорость стержня, а ω0m – соответственно минимальная угловая скорость стержня, при которой он после удара способен коснуться горизонтальной поверхности преграды; φm – максимальный угол поворота стержня после удара; ωК – угловая скорость стержня в момент его удара о горизонтальную поверхность преграды. Расчет следует начинать с определения характерной скорости V0m
355
2022г Вариант 14 - ДЗ №3 + ДЗ №4 - Колебания + Волны Зачтено на максимальный баллВариант 14 - ДЗ №3 - Колебания Каждая колебательная система (КС), представленная на рис. 28, 29, 30, 31, состоит из шайбы массой m и двух упругих пружин, имеющих жесткости k1 и k2 . Движение КС происходит в окружающей среде с малыми вязкими свойствами (малым коэффициентом сопротивления r). На рис. 28, 30 шайба колеблется под действием пружин, соединенных параллельно, а на рис. 29, 31 колебания происходят под действием пружин, соединенных последовательно. Массой пружин можно пренебречь. На рис. 28, 29 КС имеет горизонтальное расположение, а на рис. 30, 31 вертикальное расположение в поле силы тяжести. Длины 1-ой и 2-ой пружин в недеформированных состояниях равны l10 и l20. На рис.28, 30 L - длина каждой пружины в деформированном состоянии при t=0. На рис.29, 31 L - общая длина двух пружин в деформированном состоянии при t=0. Возможные векторы начальной скорости шайбы равны V1, V2. Шайбу, находящуюся в положении равновесия, смещают до расстояния L, а затем импульсом придают ей в начальный момент времени t=0 скорость V1 или V2 , в соответствии с заданием (см. таблицы №10 - 13). В результате КС приходит в колебательное движение. Варrk1k2ml10l20LV1V2143r*k*1,2k*1,4m*1,1l*1,1l*2,3l*00,3U* 2022г Вариант 14 - ДЗ №4 - Волны Зачтено на максимальный баллЗадача 4-2 для вариантов с 7 по 17 Для стержня длиной l , закреплённого, как указано на рис. 35 - 40, необходимо:   - Вывести формулу для возможных частот продольных волн, возбуждаемых в стержне, при которых в нём образуется стоячая волна; - Указать какая частота колебаний является основной, а какие частоты относятся к обертонам (к высшим гармоникам); - Определить частоту и длину волны i-ой гармоники; - Для этой гармоники нарисовать вдоль стержня качественную картину: а) Стоячей волны амплитуд смещений; б) Стоячей волны амплитуд деформаций. Исходные данные для каждого варианта задачи представлены в таблице № 17. № вар.Вид крепленияМатериалПлотность ρ, 103 кг/м3Модуль Юнга Е, 1010ПаДлина l, мОпределить i-ю гармонику14Рис 37.Латунь8,51212
356
2022г Вариант 14 - ДЗ №3 - Колебания Зачтено на максимальный баллВариант 14 - ДЗ №3 - КолебанияКаждая колебательная система (КС), представленная на рис. 28, 29, 30, 31, состоит из шайбы массой m и двух упругих пружин, имеющих жесткости k1 и k2 . Движение КС происходит в окружающей среде с малыми вязкими свойствами (малым коэффициентом сопротивления r). На рис. 28, 30 шайба колеблется под действием пружин, соединенных параллельно, а на рис. 29, 31 колебания происходят под действием пружин, соединенных последовательно. Массой пружин можно пренебречь. На рис. 28, 29 КС имеет горизонтальное расположение, а на рис. 30, 31 вертикальное расположение в поле силы тяжести. Длины 1-ой и 2-ой пружин в недеформированных состояниях равны l10 и l20. На рис.28, 30 L - длина каждой пружины в деформированном состоянии при t=0. На рис.29, 31 L - общая длина двух пружин в деформированном состоянии при t=0. Возможные векторы начальной скорости шайбы равны V1, V2. Шайбу, находящуюся в положении равновесия, смещают до расстояния L, а затем импульсом придают ей в начальный момент времени t=0 скорость V1 или V2 , в соответствии с заданием (см. таблицы №10 - 13). В результате КС приходит в колебательное движение.Варrk1k2ml10l20LV1V2143r*k*1,2k*1,4m*1,1l*1,1l*2,3l*00,3U*
360
2022г Вариант 14 - ДЗ №3 - Электромагнитная индукция Зачтено на максимальный балл Условие:  По двум гладким медным шинам скользит перемычка массы M, закон движения которой задан Y = f(t). Сопротивление перемычки равно  , поперечное сечение S, концентрация носителей заряда (электронов) в проводнике перемычки равна  . Сверху шины замкнуты электрической цепью, состоящей из конденсатора ёмкости С. Расстояние между шинами l. Система находится в однородном переменном магнитном поле с индукцией B(t), перпендикулярном плоскости, в которой перемещается перемычка. Сопротивление шин, скользящих контактов, а также самоиндукция контура пренебрежимо малы. Ток через конденсатор в начальный момент времени равен 0. Найти:  закон изменения тока I(t); максимальное значение тока Imax; закон изменения проекций силы Лоренца на ось X (Fлx) и на ось Y (Fлy), действующей на электрон; закон изменения напряженности электрического поля в перемычке E(t); силу F(t), действующую на перемычку, необходимую для обеспечения заданного закона движения. Установить связь между силой Ампера, действующей на перемычку, и силой Лоренца, действующей на все электроны в перемычке.  Построить зависимости тока через перемычку  , силы Ампера  . Закон движения перемычки для всех вариантов Y = a ;   Закон изменения магнитного поля для чётных вариантов:   ; константы a, c считать известными; n=2m, m =  . Другая работа ​
363
2022г Вариант 14 - ДЗ №4 - Электромагнитные волны Зачтено на максимальный баллУсловие: Плоская гармоническая электромагнитная волна распространяется в вакууме в положительном направлении оси Oy. Вектор плотности потока электромагнитной энергии S имеет вид:   . Считая волновое число k и амплитудное значение   вектора известными действительными величинами, что допустимо для однородной изотропной среды без эффектов поглощения, найти: вектор напряжённости электрического поля E этой волны как функцию времени t и координат точки наблюдения;вектор напряжённости магнитного поля H этой волны как функцию времени t и координат точки наблюдения;объёмную плотность энергии w;средний вектор Пойнтинга áSñсреднее значение áSñ плотности потока энергии, переносимой этой волной;вектор плотности тока смещения  среднее за период колебаний значение модуля плотности тока смещения  величину импульса K ед (в единице объёма).записать волновое уравнение для магнитной и электрической                 компонент рассматриваемой электромагнитной волны и изобразить схематично мгновенную фотографию этой волны.Данно:
364
2022г Вариант 14 - ДЗ - Определение УЗД Зачетно на максимальный баллВариант 14 - ДЗ - Определение УЗДУсловие Определить УЗД (уровни звукового давления) в расчетной точке при заданных уровнях звуковой мощности источников (Lp=f(fсг)) (источники ненаправленные), указанном расположении расчетной точки относительно источников шума, габаритных размерах промышленного помещения. Максимальный габарит любого источника много меньше расстояния до расчетной точки. Полученные данные сравнить с нормативными значениями (СН 2.2.4/2.1.8.562-96). Построить расчетный и предельный спектры. Сделать выводы о необходимости защитных мероприятий. Предложить защитные мероприятия.Примечание: постоянную помещения В определить в соответствии с назначением помещения и его объемом по СНиП II-12-77ВариантСхема расположения расчетной точки относительно источников шума (приложение 1)Расположение источников в пространствеРасстояния от источника до расчетной точки, мУровни звуковой мощности источников,(Lp=f(fсг))(приложение 2)Габаритные размеры промышленного помещения, А*В*С, м314Схема 22– подвешен1,3 – на полуR1=5R2=10R3=101 - 92 - 13 - 815х30х4Схема расположения расчетной точки относительно источников шума в помещении.Уровни звуковой мощности источников шума:№, п/п ,дБ631252505001000200040008000190919899979391862848284919494919136888928790858676                               ​
365
2022г Вариант 15 - ДЗ №1 + ДЗ №2 - Динамика материальной точки - Динамика вращательного движения Защищено в сумме на 20 из 20 возможных баллов Условие: Гладкая частица сферической формы массой m, которую можно рассматривать как материальную точку, ударяется со скоростью  о гладкую массивную преграду, которая движется со скоростью  . Угол, образованный векторами  и  ,  равен . Массу преграды считать бесконечной. На рис. 5, 6 преграда имеет форму плоской стенки, на рис.7 – форму острого конуса с углом раствора γ, а на рис. 8 – форму конуса сферической головной частью радиусом R. Удар частицы о сферическую поверхность происходит в точке А, расположенной под углом γ относительно оси преграды. При этом АО = R. Виды взаимодействия: а) абсолютно упругий удар (АУУ); б) неупругий удар (НУУ); в) абсолютно неупругий удар (АНУУ). Обозначения:  - конечная скорость частицы после удара; αк - угол, образованный векторами  и  ;  - изменение вектора скорости частицы за время удара;  - изменение модуля импульса частицы за время удара; ΔE - изменение кинетической энергии частицы за время удара; F - модуль средней силы, с которой частица действует на стенку во время удара; F.Δt - модуль импульса силы, который за время удара Δt частица передаёт стенке;  - энергия деформирования частицы при ударе, выраженная через её начальную кинетическую энергию, где  - безразмерный коэффициент. Однородный жёсткий вертикальный стержень длиной l=1 м и М=1 кг, движущийся поступательно в плоскости рисунка с постоянной горизонтальной скоростью V0, налетает на край массивной преграды (рис. 1). После удара стержень вращается вокруг оси O перпендикулярной плоскости рисунка. Ось вращения стержня совпадает с ребром преграды и проходит через точку контакта стержня с преградой, так что точка контакта лежит выше центра тяжести стержня (рис. 14). Потерями механической энергии при вращении стержня после удара пренебречь. Другие обозначения: l1 – расстояние от верхнего конца стержня до точки контакта; ω0 – угловая скорость стержня сразу после удара о ребро преграды; V0m – минимальная горизонтальная скорость стержня, а ω0m – соответственно минимальная угловая скорость стержня, при которой он после удара способен коснуться горизонтальной поверхности преграды; φm – максимальный угол поворота стержня после удара; ωК – угловая скорость стержня в момент его удара о горизонтальную поверхность преграды. Расчет следует начинать с определения характерной скорости V0m
366
2022г Вариант 15 - ДЗ №1 - Динамика материальной точки Зачтено на максимальный баллУсловие: Гладкая частица сферической формы массой m, которую можно рассматривать как материальную точку, ударяется со скоростью  о гладкую массивную преграду, которая движется со скоростью  . Угол, образованный векторами  и  ,  равен . Массу преграды считать бесконечной. На рис. 5, 6 преграда имеет форму плоской стенки, на рис.7 – форму острого конуса с углом раствора γ, а на рис. 8 – форму конуса сферической головной частью радиусом R. Удар частицы о сферическую поверхность происходит в точке А, расположенной под углом γ относительно оси преграды. При этом АО = R. Виды взаимодействия: а) абсолютно упругий удар (АУУ); б) неупругий удар (НУУ); в) абсолютно неупругий удар (АНУУ). Обозначения:  - конечная скорость частицы после удара; αк - угол, образованный векторами  и  ;  - изменение вектора скорости частицы за время удара;  - изменение модуля импульса частицы за время удара; ΔE - изменение кинетической энергии частицы за время удара; F - модуль средней силы, с которой частица действует на стенку во время удара; F.Δt - модуль импульса силы, который за время удара Δt частица передаёт стенке;  - энергия деформирования частицы при ударе, выраженная через её начальную кинетическую энергию, где  - безразмерный коэффициент.
371
2022г Вариант 15 - ДЗ №2 - Динамика вращательного движения Зачтено на максимальный баллОднородный жёсткий вертикальный стержень длиной l=1 м и М=1 кг, движущийся поступательно в плоскости рисунка с постоянной горизонтальной скоростью V0, налетает на край массивной преграды (рис. 1). После удара стержень вращается вокруг оси O перпендикулярной плоскости рисунка. Ось вращения стержня совпадает с ребром преграды и проходит через точку контакта стержня с преградой, так что точка контакта лежит выше центра тяжести стержня (рис. 14). Потерями механической энергии при вращении стержня после удара пренебречь. Другие обозначения: l1 – расстояние от верхнего конца стержня до точки контакта; ω0 – угловая скорость стержня сразу после удара о ребро преграды; V0m – минимальная горизонтальная скорость стержня, а ω0m – соответственно минимальная угловая скорость стержня, при которой он после удара способен коснуться горизонтальной поверхности преграды; φm – максимальный угол поворота стержня после удара; ωК – угловая скорость стержня в момент его удара о горизонтальную поверхность преграды. Расчет следует начинать с определения характерной скорости V0m