Закономерности получения изделий из металлических порошков методом прессования

Министерство образования и науки Российской Федерации

Федеральное Государственное Бюджетное Образовательное Учреждение

Высшего Профессионального Образования

Волгоградский Государственный архитектурно – строительный университет

Волжский институт строительства и технологий (филиал)

 

 

 

 

 

 

Факультет МТФ

Кафедра ТПМ

 

 

 

 

Курсовая работа

По дисциплине: Процессы  порошковой металлургии.

на тему: Закономерности получения изделий из металлических порошков методом прессования.

 

 

 

 

 

 

 

 

 

 

 

 

Выполнил: студент гр. ПМКМП - 10 

                                   Иванов .В.В.

Проверил    проф. 

Иванов В.М

 

 

 

 

 

 

Волжский 2014

Вариант 15

Вид порошкового материала – Никель

Марка порошка- ПНК-УТ1

Метод изготовления – Карбонильный метод

Пористость, П, % - 23%

Диаметр изделия, d, мм – 16

Высота изделия, h, мм – 36

m – 3,5

Pmax, МПа - 880

hдоп.,мм – 10

Lдоп,мм-20

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

ВВЕДЕНИЕ 3

  1. МЕТОДЫ ИЗГОТОВЛЕНИЯ ПОРОШКОВЫХ

МАТЕРИАЛОВ...............................................................................,...........................4

  1. МЕТОДЫ КОНТРОЛЯ СВОЙСТВ ПОРОШКОВ 10
  2. Химические свойства…………………………………………………………..10
  3. Физические свойства 11
  4. Технологические свойства 13

3  ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ПРЕССОВАНИЯ 15

4  ТЕХНОЛОГИЧЕСКИЕ РЕЖИМЫ СПЕКАНИЯ 18

5  ПРИМЕНЕНИЕ ПОРОШКОВЫХ МАТЕРИАЛОВ 20

ЗАКЛЮЧЕНИЕ 22

СПИСОК ИСПОЛЬЗОВАННой литературы……………………………………..23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Производство деталей из металлических порошков относится к отрасли техники, называемой металлокерамикой или порошковой металлургией. Метод порошковой металлургии позволяет получить материалы и детали, обладающие высокой жаропрочностью, износостойкостью, твёрдостью, заданными стабильными магнитными свойствами. При этом порошковая металлургия позволяет получать большую экономию металла и значительно снижать себестоимость изделий.

Порошковая металлургия позволяет получать металлокерамические материалы с особыми физико-химическими, механическими и технологическими свойствами, которые невозможно получить методами литья, обработки давлением.

Однако многие металлокерамические материалы и детали имеют низкие механические свойства (пластичность и ударную вязкость). Кроме того, в ряде случаев стоимость металлических порошков значительно превышает стоимость литых металлов.

Развитие порошковой металлургии обусловлено главным образом тем, что её технологические операции сравнительно просты, а достигаемый с их помощью эффект во многих случаях оказывается поразительным. Только порошковая металлургия позволила преодолеть трудности, возникшие при производстве изделий из тугоплавких (температура плавления 2000 °С и выше) металлов, получать сплавы из металлов с резко различающими температурами плавления, изготавливать материалы из металлов и неметаллов или из нескольких слоёв разнородных компонентов, производить фильтрующие материалы с равномерной объёмной пористостью и успешно решать другие задачи.

 

 

 

 

1 Методы изготовления порошковых материалов

 

Сущность порошковой металлургии заключается в производстве порошков и изготовлении из них изделий, покрытий или материалов многофункционального назначения по безотходной технологии. Порошки получают из металлического и неметаллического сырья, а также вторичного сырья машиностроительного и металлургического производства. Технологический процесс производства и обработки изделий и материалов методами порошковой металлургии включает получение порошков, их формование в заготовки, спекание (температурную обработку) и при необходимости окончательную обработку (доводку, калибровку, уплотняющее обжатие, термообработку).

Способы производства порошков подразделяют на механические (без изменения химического состава исходных материалов), физико-химические и комбинированные.

Механический метод подразумевает механическое измельчение компактных материалов, осуществляющееся путём дробления, размола или истирания в специальных агрегатах-мельницах (вихревых, планетарных, центробежных, шаровых, вибрационных, вращающихся и т.д.).

Физико-химические методы получения металлических порошков. Соединения галогениды металлов, которые восстанавливаются либо водородом, либо активными металлами (натрий и магний). Механизм восстановления большинства твердых соединений газообразными восстановителями основывается на адсорбционно-автокаталитической теории.

Восстановители, используемые при восстановлении порошков.

Восстановителями служат газы (водород, оксид углерода, диссоциированный аммиак, природный конвертируемый, водяной, коксовый или доменный газы), твердый углерод (кокс, древесный уголь, сажа) и металлы. Выбор восстановителя зависит не только от термодинамических оценок, но и от летучести, которая должна быть минимальной, так как иначе процесс нужно вести при повышенном давлении за счет аргона или других инертных газов.

Железный порошок - основа многотоннажной ПМ. Существуют методы получение порошков из FeCl2 . Восстановленный водородом железный порошок имеет высокую чистоту и стоимость.

Восстановление оксидом углерода проводится при температурах выше 1000 °С на основе адсорбционно - каталитического механизма. Восстановление твердым углеродом происходит при 900-1000°С.

Содовый метод применяется для получения порошка повышенной чистоты. В шихту добавляют 10 - 20% соды, с которой при восстановлении взаимодействуют примеси, образуя растворимые в воде натриевые алюминаты.

Комбинированный процесс включает в себя восстановление магнием, а после отмывки - кальцием, расход которого снижается в два раза. Восстановлениегидридом кальция получают порошок титана и его гидрида. Восстановление хлорида титана натрием. Хлорид титана получают хлорированием концентрата руд, очисткой и фракционной дистилляцией. Восстановление хлорида титана магнием наиболее экономичный способ. Реакция происходит при 800 - 900°С. Стальной герметичный аппарат заполняют слитками магния, откачивают воздух, заполняют аргоном, плавят магний, сверху подают лимитированное количество хлорида титана, чтобы не было перегрева.

Восстановление из растворов, газообразных соединений и в плазме . Из растворов соединений Ni, Си, Со металлы вытесняют водородом в автоклавах. Сдвигать потенциал водорода в отрицательную сторону можно, повышая рН или увеличивая давление водорода. Эффективнее изменять рН, повышение, которого на единицу эквивалентно изменению давления водорода в 100 раз. Термические расчеты показывают, указанные металлы можно осадить уже при 25°С и 0,1 МПа. Восстановление газообразных соединений водородом осуществляется в кипящем слое из галогенидов вольфрама, рения, молибдена, ниобия и титана. Получение высокодисперсных порошков в плазме перспективно для металлов, карбидов, нитридов и др. Восстановители - водород или продукты плазменной конверсии с высокой температурой и без окислителей. Оксид никеля восстанавливают в струе Аг – Н2 или Аг - СО, причем содержание водорода близко к стехиометрическому, а теплообмен и плазмообразование происходят за счет аргона. Реакция лимитируется диссоциацией NiO, полное его восстановление достигается при 7000°С.

Физико-химические основы получения порошков электролизом. Процесс представляет собой своеобразное восстановление: передача электронов к металлу с одновременной перестройкой структуры происходит не с помощью восстановителей, а за счет электрической энергии. Способ универсален, обеспечивает высокую чистоту порошков. Электролиз - один из самых сложных физико-химических процессов производства порошков. Процесс заключается в разложении водных растворов соединений выделяемого материала. Наличие хлора или фтора на аноде заставляет принимать меры попредотвращению его взаимодействия с электролитом и порошком. Электролит от порошков отделяется отгонкой нагреванием или центрифугированием и отмывкой.

Электролиз водных растворов . Способ для получения порошков меди, серебра, железа, никеля, кобальта, олова и др. Никель, цинк, кобальт образуют равномерные плотные мелкозернистые осадки независимо от природы электролита. Серебро или кадмий растут в виде отдельно сильно разветвляющихся кристаллов при электролизе простых солей, из раствора цианистых солей они выделяются в виде ровного гладкого слоя.

Получение медного, никелевого, железного порошка. Медный порошок получают из раствора сернокислой меди, он имеет высокую чистоту и регулируемую дисперсность. Никелевый порошок получают электролизом аммиачных растворов хлорно - кислого никеля. Особенности получения железного порошка связаны с тем, что в ряду напряжений железо располагается левее водорода, поэтому последний выделяется вместе с водородом, ухудшая выход по току и качества порошка.

Известен способ получения никеля из оксида NiO, являющийся заключительной стадией способа производства никеля из никелевых руд. Способ заключается в том, что NiO с добавкой кокса загружают в электродуговую печь, имеющую огнеупорные под (ванну), стенки, свод и летку для слива жидкого никеля. Затем NiO расплавляют электрическими дугами, восстанавливают углеродом и сливают из печи получающийся жидкий никель (Тарасов А.В., Уткин Н.И. Технология цветной металлургии. - М.: Металлургия, 1999, - с.262).

К недостаткам способа следует отнести значительный угар никеля, который достигает 5-8% за счет того, что источником тепла в дуговой печи являются мощные электрические дуги, имеющие температуру 5000-8000 К (Еднерал Ф.П. Электрометаллургия стали и ферросплавов. - М.: Металлургиздат, 1963, - с.71) с фиксированным местом контакта с расплавляемым оксидом никеля и нагреваемым восстановленным никелем. Угар никеля происходит из-за того, что нагреть его дугами можно только до температуры испарения (кипения), равной 2800°С (Краткий справочник металлурга. - М.: Металлургиздат, 1960, - с.28), а большая часть тепла от дуг идет на испарение никеля.

Задачей изобретения является снижение угара никеля при выплавке в печи.

Поставленный технический результат достигается тем, что в предлагаемом способе выплавки никеля из оксида никеля в огнеупорной печи, имеющей под, свод, стенки и летку, включающем загрузку в печь оксида никеля с добавкой кокса, расплавление оксида никеля и его восстановление с получением жидкого расплава никеля, причем плавление оксида никеля и нагрев никеля ведут теплом лазерных лучей, направленных на поверхность шихты и расплава в печи, которые перемещают по поверхности шихты и расплава для предотвращения перегрева и испарения никеля.

Изобретение обладает новизной, что следует из сравнения с прототипом и изобретательским уровнем, так как явно не следует из существующего уровня техники, практически осуществимо в действующих цехах, выплавляющих никель.

Способ выплавки никеля осуществляют следующим образом.

В огнеупорную печь, имеющую под (ванну), свод стенки и летку, загружают оксид никеля (NiO) с добавкой кокса и далее расплавляют оксид никеля за счет тепла, выделяемого лазерным лучом или несколькими лучами, направленными на поверхность шихты, а после начала плавления - на поверхность жидкой ванны. При этом лазерные лучи перемещают по поверхности ванны для того, чтобы увеличить площадь нагрева, избежать сильного перегрева расплава в каком-либо одном месте ванны и не доводить температуру никеля до температуры кипения 2800°С. Этот прием позволяет предотвратить испарение никеля в местах сильного нагрева ванны и исключает его заметный угар. При плавлении оксида никеля и в жидкой ванне происходит его восстановление углеродом кокса с образованием никеля, который также расплавляется. По окончании восстановления жидкий никель сливают из печи через летку.

Способ выплавки никеля из оксида никеля в огнеупорной печи, имеющей под, свод, стенки и летку, включающий загрузку в печь оксида никеля с добавкой кокса, расплавление оксида никеля и его восстановление с получением жидкого расплава никеля, отличающийся тем, что плавление оксида никеля и никеля ведут теплом лазерных лучей, направленных на поверхность шихты и расплава в печи, которые перемещают по поверхности шихты и расплава для предотвращения перегрева и испарения никеля. 

 

 

 

  1. Методы контроля свойств порошков
      1. Химические свойства

Химические свойства порошков  зависят от содержания основного металла или основных компонентов, входящих в состав комплексных порошков, а также от содержания примесей, различных механических загрязнений и газов. Также важными химическими особенностями порошков являются их воспламеняемость, взрываемость и тоскичность.  
      Содержание основного металла в порошке или сумма основных компонентов сплава составляет обычно более 98-99%, что для последующего изготовления большинства порошковых материалов достаточно. В некоторых случаях при производстве изделий с особыми свойствами (например, магнитными) применяют более чистые металлические порошки.  
Предельное количество примесей в порошках определяется допустимым содержанием их в готовой продукции. В металлических порошках содержится значительное количество газов (кислорода, водорода, азота и др.) как адсорбированных на поверхности, так и попавших внутрь частиц в процессе изготовления или при последующей обработке.  
Воспламеняемость порошка связана с его способностью к самовозгоранию при соприкосновении с окружающей атмосферой, которая при относительно невысоких температурах может привести к воспламенению порошка или даже взрыву.  
Пожароопасность зависит от химической природы и чистоты металла, крупности и формы частиц порошка, состояния их поверхности (пленки оксидов уменьшают пожароопасность, а шероховатость усиливает ее).  
Воспламеняемость порошка зависит от того, находится ли он в свободно насыпанном состоянии (в виде аэрогеля) или в виде взвеси в окружающей атмосфере (в виде аэрозоля). Для аэрогелей определяют температуры самонагревания, тления, самовоспламенения, а также энергию воспламенения.  

      Взрываемость порошка. Сверхвысокие скорости химического взаимодействия порошка с кислородом приводят к почти мгновенному выделению энергии, которое сопровождается образованием и распространением взрывной волны (происходит взрыв).  
Металлические порошки, располагающиеся слоем (аэрогели), не способны взрываться. Поэтому, рассматривая взрываемость порошков, имеют в виду взрываемость аэрозолей, т.е. взвеси металлических частиц в газе.  
Характеристики взрываемости зависят от дисперсности металлического порошка, степени его окисленности и содержания кислорода в газовой фазе.  
       Токсичность порошка. Практически пыль любоко из металлов, в том числе и совершенно безвредных в компактном состоянии, воздействует на человека и может вызвать патологические изменения в его организме, фиброгенные и аллергические заболевания. Степень опасности для здоровья человека металлических пылей зависит от их химического состава и степени окисленности, размера частиц, их концентрации, длительности воздействия, путей проникновения в организм и т.д. Технологические и санитарно-технические мероприятия должны поддерживать в производственных помещениях концентрацию пыли на уровне ниже нормы ПДК .  
Согласно заданию дан порошок ПНК-УТ1, полученный карбонильным  методом. Его химический состав:Ni 99.9%, Fe до 0,0015, C до 0.9,Si до 0,001, Mn до 0.0003, S до  0,0007, Co 0,001, Mg 0,0003, As 0,0005. 
2.2 Физические свойства 
          К физическим свойствам порошка относятся форма и размер частиц, гранулометрический состав, удельная поверхность частиц, пикнометрическая плотность и микротвердость.  
        Форма и размер частиц. В зависимости от химической природы металла и способа получения, частицы порошка могут иметь различную форму – сферическую (карбонильные), каплеобразную (распыленные порошки), губчатую (восстановленные), тарельчатую (при размоле в вихревых мельницах), дендритную (электролитические), осколочную (при размоле в шаровых и вибромельницах), волокнистую и лепесткововидную (получение при плющении).  
        Форма частиц порошков оказывает большое влияние на насыпную плотность и прессуемость, а также на плотность, прочность и однородность прессовок.  
В зависимости от метода получения порошков их размеры могут колебаться в больших пределах. В связи с этим порошки классифицируются на ультратонкие с размером частиц до 0,5 мкм; весьма тонкие – от 0,5 до 10 мкм; тонкие – от 10 до 40 мкм; средней тонкости – от 40 до 150 мкм и крупные (грубые) – свыше 150 мкм.  
         Гранулометрический состав. Размер частиц является важнейшей технологической характеристикой порошков. Величина частиц, а особенно так называемый набор зернистости, т.е. соотношение количества частиц разных размеров (фракций) выраженное в процентах, называется гранулометрическим составом. Данные по гранулометрическому составу входят в качестве обязательного требования к техническим условиям на порошки.  
От размера частиц порошков в сочетании с другими свойствами зависят насыпная плотность, давление прессования, усадка при спекании,  
механические свойства готовых изделий.  
          Существует несколько методов определения гранулометрического состава порошков: ситовый анализ, микроскопический метод, седиментация и др. Самым простым и наиболее распространенным является ситовый анализ, который состоит в просеивании пробы порошка через набор сит, взвешивании отдельных фракций и расчета их процентного содержания .  
            Удельная поверхность частиц. Под удельной поверхностью порошкообразных тел понимается суммарная поверхность всех частиц порошка, взятого в единице объема или массы.  
Удельная поверхность зависит от размера и формы частиц, а также от степени развитости их поверхности. Удельная поверхность возрастает с уменьшением размера частиц, усложнением формы и увеличением шероховатости поверхности.  
Удельная поверхность – важная характеристика, которая определяет поведение порошкового материала при основных технологических операциях – прессовании и спекании.  
           Наиболее часто для определения показателя удельной поверхности применяют методы измерения его газопроницаемости и адсорбции.  
        Пикнометрическая плотность. Исследование плотности металлических порошков в зависимости от метода их получения показывает, что фактическая плотность частиц порошка значительно отличается от плотности, вычисленной на основе рентгенографических данных при определении кристаллографической структуры металлического порошка. Это различие в плотности объясняется наличием в металле порошка значительной внутренней пористости, дефектов, оксидов и т.п. Поэтому в практике порошковой металлургии важное значение приобретает фактическая плотность, которую определяют пикнометрическим методом. Микротвердость частиц порошка позволяет косвенно оценивать их способность к деформированию. Ее величина зависит от природы и химической чистоты металла, а также от условий предварительной обработки порошка, изменяющей структуру его частиц. Деформируемость имеет важное значение для оценки технологических свойств порошков, главным образом их прессуемости .  
Микротвердость частиц порошка определяют по методу Виккерса, т.е. вдавливанием алмазной пирамиды в исследуемый материал с целью прогнозирования поведения порошка при прессовании и для разработки новых материалов .  
2.3 Технологические свойства 
     Под технологическими свойствами порошков понимается их насыпная плотность, текучесть, уплотняемость, прессуемость и формуемость.  
      Насыпная плотность порошка – масса единицы объема порошка при свободной насыпке.  
      Насыпная плотность выражает способность порошка к укладке и зависит от плотности металла (сплава) и фактического заполнения порошком объема. Плотность укладки частиц порошка в объеме определяется его дисперсностью, формой и удельной поверхностью частиц. Поэтому насыпная плотность порошка из одного металла (в зависимости от метода получения) может иметь различное значение.  
Текучесть порошка – способность порошка с определенной скоростью вытекать из отверстия. Этот показатель важен для организации процесса автоматического прессования заготовок. По стандарту текучесть выражают числом секунд, за которое 50 г порошка вытекает через колиброванные отверстия конусной воронки.  
       Уплотняемость – способность уменьшать занимаемый объем порошкового материала под воздействием давления или вибрации. По стандарту эта характеристика оценивается по плотности прессовок, изготовленных при давлениях прессования в цилиндрических пресс-формах с заданным диаметром.  
       Прессуемость – способность образовывать тело при прессовании, которое имеет заданные размеры и форму.  
      Формуемость – способность сохранять приданную ему под воздействием давления форму в заданном интервале пористости. Формуемость порошка в основном зависит от формы, размеров и состояния поверхности частиц. Как правило, порошки с хорошей формуемостью обладают не очень хорошей прессуемостью, и наоборот. Чем выше насыпная плотность порошка, тем хуже формуемость и лучше прессуемость.

По заданию дан порошок марки ПНК-УТ1, насыпная плотность которого составляет3.0-3.5 г/см³. г/см3. 

 

 

3 Основные закономерности прессования

3.1 Расчет давления прессования

Для расчета давления прессования целесообразно использовать уравнение М. Ю. Бальшина:

где Pmax [МПа]– давление прессования, необходимое для получения беспористого тела. По физической сущности оно равно давлению истечения матер Pmax = 880 МПа;

m – коэффициент, учитывающий природу прессуемого материала и называется показатель прессования.

m = 3,5;

β – относительный объем прессовки, связанный с относительной плотностью.

Плотность компактного материала γк рассчитаем по формуле: 
γк=Ni* γNi+C* γC+Fe* γFe+Co* γCo+Si* γSi+Cu* γCu+Mg*γMg+As*γAs+S*γS

γк=  8.99*0.99+2.25*0.009+7.874*0.00015+8.9*0.001+2.23*0.001+8.92*0.00003+1.737*0.0003+5.73*0.00005+2.070*0.00007=8.93 г/см3

Пористость рассчитывается по формуле:

Отсюда: γпресс = γк - П·γк

П = 23% = 0,23%

γпресс= 8,99-8,99*0,23=6,9223 г/см3

Рассчитав γпресс и γк можно найти γотн:  
γотн  = 6,9223/8,99=0,77 г/см3

Следовательно: β = 1 / 0,77 = 1,298

Используя найденные показатели можно рассчитать давление прессования:  
Р = 880 / 1,298^ 3.5 = 353.2 МПа 

3.2 Расчет высоты матрицы  прессформы


 

                                                Изделие:


 

 

 

 

Рисунок 1 – Схема простейшей пресс формы для ручного прессования

D1 = D + 2a

D = d = 16 мм,  а = 20 мм

Тогда D1 = 16 + 2∙20 = 56 мм

Рассчитываем высоту матрицы пресс формы:

,

h = 36 мм, lдоп = 20 мм, γнас = 3,5г/см3 

Тогда Н = 6,9223/3,5*36+20=91 мм

hп =H+hдоп

hдоп = 10 мм

hп = 91+10= 101 мм

Для матрицы и пуансона простой формы выбираем сталь У8.

3.4 Выбор  прессформы  
Основным приспособлением при прессовании металлических порошков является прессформа. Конструкция пресс-формы определяется такими факторами, как характер приложения давления при прессовании – одностороннее или двухстороннее; применяемый способ извлечения изделия из пресс-формы – выталкивание или разборка пресс-формы; количество одновременно прессуемых изделий – одно или многоместная пресс-форма; и, наконец, метод работы – индивидуальное прессование с ручной распрессовкой или применение полностью автоматизированного процесса.  
Для данного порошка выбираем разборную прессформу с односторонним прессованием. 

 

 

Рисунок 2 – разборная пресс-форма

1 – башмак; 2 – крепежный  болт; 3 – щеки; 4 – пуансон; 5 –  подкладка; 6 – прессовка.

 

Пресс-форма состоит из матрицы, пуансона и подставки. Матрица служит для вмещения порошка и формирования боковой поверхности прессовки. Пуансон – служит  для формирования верхней поверхности прессования и обжатия порошка, он является подвижной частью пресс формы. Подставка необходима  для формирования нижней поверхности изделия.  Она препятствует  высыпанию порошка из пресс-формы. Разборная пресс-форма собирается в специальном башмаке и прочно в нем закрепляется. Прессовка удаляется после разборки пресс-формы.

4 Технологические режимы спекания

Спекание – это нагрев и выдержка порошковой формовки при температуре ниже точки плавления основного компонента с целью обеспечения заданных механических и физико-химических свойств. Под спеканием понимают термическую обработку, приводящую к уплотнению свободно насыпанной или спрессованной массы порошка. Спекание сопровождается протеканием физико-химических процессов, которые обеспечивают большее или меньшее заполнение пор.  
        Для однокомпонентных систем технологическая температура спекания составляет 0,6-0,9 от температуры плавления основного компонента.  
Многокомпонентные системы спекают при температуре, равной или немного большей, чем температура плавления наиболее легкоплавкого компонента.  
        Спекание является заключительной технологической операцией, которая и определяет сущность метода порошковой металлургии. В процессе проведения спекания порошковая формовка превращается в прочное порошковое тело со свойствами, приближающимися к свойствам компактного беспористого  материала.  
Во время спекания происходит:  
·                        изменение размеров, структуры и свойств исходных порошковых тел;  
·                       

 протекают процессы  граничной, поверхностной и объемной  диффузии;  
·                        наблюдается различные дислокационные явления;  
·                        осуществляется перенос через газовую фазу;  
·                        протекают химические реакции и различные фазовые превращения;  
·                        имеет место релаксация микро- и макронапряжений;  
·                        идут процессы рекристаллизации, т.е. наблюдается рост зерна материала 

Мной был выбран порошок марки ПНК-УТ1, который относится к многокомпонентной системе. Температуры плавления основных компонентов:  
tплавNi= 1453C 
 
Выбираем температуру спекания приблизительно равной температуре плавления самого легкоплавкого компонента - температуру плавления никеля tплавNi=1453С. Спекание проводим в вакууме. Температура спекания выше 1200С, следовательно, время выдержки составляет 4 часа. 

 

 

 

 

 

 

 

 

5 Применение  порошковых материалов  
              Методом порошковой металлургии можно получить такие электротехнические материалы и сплавы, которые трудно или совершенно невозможно получить другими известными способами. Например, различные сплавы из металлов, не сплавляющихся между собой: вольфрам-медь, вольфрам-серебро и т.п., а также из металлов и неметаллов: медь-графит, серебро-окись кадмия и т.д., которые находят широкое распространение в электро- и радиотехнике.  
       Методом порошковой металлургии можно также получить сплавы с точно заданным составом, обладающие очень низким и очень высоким электросопротивлением.  
        Металлокерамические материалы применяют в электро- и радиовакуумной промышленности при изготовлении ламп накаливания, в рентгеновских трубках, катодных лампах, выпрямителях и усилителях, генераторных лампах, кенотронах, газотронах и т.д. Так, например, для изготовления нитей накаливания обычных осветительных электроламп применяется вольфрам, получаемый методами порошковой металлургии.  
           Широкое внедрение в промышленность электронагрева различных материалов внесло значительное изменение в технологию производства. В развитии электронагревательных злементов большая роль принадлежит металлокерамическим материалам.  
             Промышленное использование высоких потенциалов выдвигает необходимость в разработке контактных устройств из тугоплавких материалов, которые должны обладать высокой теплопроводностью и электропроводностью, иметь высокую степень прочности в условиях ударных нагрузок при высоких температурах, незначительную склонность к свариванию и прилипанию. Изготовление контактных материалов, обладающих таким сочетанием свойств, возможно только методами порошковой металлургии .  
       Современные резцы из твердых сплавов, полученные методом порошковой металлургии, вызвали подлинную революцию в обработке металлов резанием и в горном деле. Скорость обработки металлов увеличилась в десятки раз.  
     Успешно применяются в промышленности различные металлокерамические антифрикционные материалы, а также пористые подшипники, фильтры и многие другие изделия.  
 
Заключение  
          Согласно варианту задания был выбран порошок марки ПНК-УТ1, из которого требуется изготовить деталь методом порошковой металлургии цилиндрической формы с заданными размерами: d = 16 мм, h =36 мм.  
        Данный порошок содержит 99% никеля и незначительные примеси , насыпная плотность составляет γнас = 3,5 г/см3.  
       Изделие изготавливается методом одностороннего прессования в разборной прессформе с размерами D = 16 мм,D1 = 56 мм, H = 91 мм,  hп = 101 мм. матрица и пуансон прессформы изготовлены из стали маркой У8. Давление прессования составляет 353.2 МПа.  
      Спекание проводят в вакууме при температуре  1453 С в течение 4 часов.  
Изделия, изготавливаемые из данного образца, находят разнообразные области применения.  
 
Список использованных источников  
1.  Федорченко И. М. Основы порошковой металлургии.– Киев: Издат. Академии наук Украинской ССР, 1961  
2.  Андреевский Р. А. Порошковое материаловедение.– М.: Металлургия, 1991  
3.  Цукерман С. А. Порошковая металлургия.– М.: Издат. Академия наук СССР, 1958 

4. Курс лекций  
5.  Бальшин М. Ю.  Порошковое металловедение.– М.: Металлургиздат, 1948  
6. Кипарисов С. С., Либенсон Г. А. Порошковая металлургия. – 3-е изд. перераб. и доп. – М.: Металлургия, 1991  
7.  Ермаков С. С., Вязников Н. Ф. Порошковые стали и изделия. – 4-е изд. перераб. и доп. – Л.: Машиностроение. Ленинград. отд., 1990

8. Вязников Н.Ф., Ермаков С.С. Применение порошковой металлургии в промышленности. – М.: Гос. научно-технич. издат. машиностроит. литературы, 1960 

 

 

 

 

 

 

 

 


Закономерности получения изделий из металлических порошков методом прессования