Выполненные решения заданий и задач. 14

615
2022г Вариант 4 - ДЗ №2 - Динамика вращательного движенияЗачтено на максимальный баллОднородный жесткий стержень длиной l=1 м и массой M=1 кг свободно висит на горизонтальной идеально гладкой оси вращения О, как показано на рис. 1.  Ось вращения перпендикулярна плоскости рисунка. Малый шарик массой m=0,1кг, летящий горизонтально со скоростью  , движется в плоскости рисунка и ударяет в стержень. При этом взаимодействие шарика со стержнем может происходить в виде:  a)    абсолютно упругого удара (АУУ); b)    неупругого удара (НУУ);  c)    абсолютно неупругого удара (АНУУ). Сразу после удара стержень вращается с угловой скоростью 0, а шарик приобретает скорость   и продолжает двигаться в плоскости рисунка. Другие обозначения:  E - потеря энергии при ударе;   - минимальная начальная скорость шарика, при которой стержень после удара совершает полный оборот;  K - угловая скорость стержня при прохождении им крайней верхней точки; m - максимальный угол отклонения стержня от положения равновесия.  Другие исходные данные и искомые величины для каждого варианта задания представлены в таблице:
622
2022г Вариант 4 - ДЗ №3 + ДЗ №4 - Колебания + Волны Зачтено на максимальный баллВариант 4 - ДЗ №3 - Колебания Для механических систем (МС), расположенных на горизонтальной плоскости и представленных на рис. 22 – 25, определить круговую частоту и период собственных незатухающих колебаний. Значения масс шариков, жёсткость соединяющих их пружин, а также другие исходные данные приведены в табл. 8. Трением шариков при их движении о контактную горизонтальную плоскость пренебречь. ВарРисmkl0lrV1V2224,250,7m*1,3k*1,1l*1,4l*1,9r*00,6u*Для конкретной колебательной системы (КС), представленной на соответствующем рисунке, необходимо: 1. Вывести дифференциальное уравнение малых свободных затухающих колебаний, если сила сопротивления движению тела КС пропорциональна скорости, т.е., где r - коэффициент сопротивления. 2. Определить круговую частоту  и период T0 свободных незатухающих колебаний. 3. Найти круговую частоту  и период T свободных затухающих колебаний. 4. Вычислить логарифмический декремент затухания. 5. Определить, используя начальные условия задачи и исходные данные, начальные амплитуду A0 и фазу  колебаний. 6. Написать с учетом найденных значений уравнение колебаний. Другие исходные данные и начальные условия задачи для каждого варианта задания приведены в табл. 8 – 15. 2022г Вариант 4 - ДЗ №4 - Волны Зачтено на максимальный баллВ среде на расстоянии d друг от друга находятся одинаковые излучатели плоских продольных, акустических, монохроматических волн (S1 и S2, рис.34). Оба излучателя колеблются по закону , где - смещение излучателя из положения равновесия при колебаниях, A - амплитуда, ω - круговая частота при колебаниях излучателя. Исходные данные для каждого варианта задания представлены в таблице № 16 № варЧастота υ кГцАмплитуда А, ммd, мl, мСредаСкорость волны в среде с, м/с4100,30,930вода1500 Необходимо: - Вывести уравнение колебаний частиц среды в точке М, находящейся на расстоянии l от второго излучателя. Считать, что направления колебаний частиц среды в точке М совпадают с осью x; - Определить отношение амплитуды смещений частиц среды к длине волны l; - Вывести уравнение колебаний скорости частиц среды в точке М. Найти амплитуду скорости частиц среды и её отношение к скорости распространения волны; - Вывести уравнение колебаний деформаций частиц среды в точке М. Найти связь амплитуды деформаций с амплитудой скорости частиц среды.
623
2022г Вариант 4 - ДЗ №3 - Колебания Зачтено на максимальный баллВариант 4 - ДЗ №3 - КолебанияДля механических систем (МС), расположенных на горизонтальной плоскости и представленных на рис. 22 – 25, определить круговую частоту и период собственных незатухающих колебаний. Значения масс шариков, жёсткость соединяющих их пружин, а также другие исходные данные приведены в табл. 8. Трением шариков при их движении о контактную горизонтальную плоскость пренебречь.ВарРисmkl0lrV1V2224,250,7m*1,3k*1,1l*1,4l*1,9r*00,6u*Для конкретной колебательной системы (КС), представленной на соответствующем рисунке, необходимо:1. Вывести дифференциальное уравнение малых свободных затухающих колебаний, если сила сопротивления движению тела КС пропорциональна скорости, т.е., где r - коэффициент сопротивления.2. Определить круговую частоту  и период T0 свободных незатухающих колебаний.3. Найти круговую частоту  и период T свободных затухающих колебаний.4. Вычислить логарифмический декремент затухания.5. Определить, используя начальные условия задачи и исходные данные, начальные амплитуду A0 и фазу  колебаний.6. Написать с учетом найденных значений уравнение колебаний.Другие исходные данные и начальные условия задачи для каждого варианта задания приведены в табл. 8 – 15.
625
2022г Вариант 4 - ДЗ №4 - Волны Зачтено на максимальный баллВ среде на расстоянии d друг от друга находятся одинаковые излучатели плоских продольных, акустических, монохроматических волн (S1 и S2, рис.34). Оба излучателя колеблются по закону , где - смещение излучателя из положения равновесия при колебаниях, A - амплитуда, ω - круговая частота при колебаниях излучателя.Исходные данные для каждого варианта задания представлены в таблице № 16№ варЧастота υкГцАмплитуда А,ммd, мl, мСредаСкорость волны в среде с, м/с4100,30,930вода1500 Необходимо:- Вывести уравнение колебаний частиц среды в точке М, находящейся на расстоянии l от второго излучателя. Считать, что направления колебаний частиц среды в точке М совпадают с осью x;- Определить отношение амплитуды смещений частиц среды к длине волны l;- Вывести уравнение колебаний скорости частиц среды в точке М. Найти амплитуду скорости частиц среды и её отношение к скорости распространения волны;- Вывести уравнение колебаний деформаций частиц среды в точке М. Найти связь амплитуды деформаций с амплитудой скорости частиц среды.​
627
2022г Вариант 4 - ДЗ - Шум (Определение УЗД) Зачтено на максимальный балл ​​​​Вариант 4 - ДЗ - Определение УЗДУсловие Определить УЗД (уровни звукового давления) в расчетной точке при заданных уровнях звуковой мощности источников (Lp=f(fсг)) (источники ненаправленные), указанном расположении расчетной точки относительно источников шума, габаритных размерах промышленного помещения. Максимальный габарит любого источника много меньше расстояния до расчетной точки. Полученные данные сравнить с нормативными значениями (СН 2.2.4/2.1.8.562-96). Построить расчетный и предельный спектры. Сделать выводы о необходимости защитных мероприятий. Предложить защитные мероприятия.Примечание: постоянную помещения В определить в соответствии с назначением помещения и его объемом по СНиП II-12-77ВариантСхема расположения расчетной точки относительно источников шума (приложение 1)Расположение источников в пространствеРасстояния от источника до расчетной точки, мУровни звуковой мощности источников,(Lp=f(fсг))(приложене 2)Габаритные размеры промышленного помещения, А*В*С, м34Схема 22– подвешены1,3 – на полуR1=12R2=13R3=81 - 92 - 43 - 115х30х4№, п/п ,дБ631252505001000200040008000190919899979391862727268686868717038482849194949191
628
2022г Вариант 5 - ДЗ №1 + ДЗ №2 - Динамика материальной точки - Динамика вращательного движения Защищено в сумме на 20 из 20 возможных баллов. Две гладкие частицы сферической формы с массами m1 и m2, движущиеся со скоростями   и  , сталкиваются под углом b, как указано на рис.1. Расстояние до места встречи и скорости частиц соответствуют условиям соударения (отсутствию промаха).  На рис.1: b - угол встречи, т.е. угол, образованный векторами  и   ; a = (p - b) - дополнительный угол; j - угол между линией удара O1O2 и вектором   . Другие обозначения:    и   - скорости соответственно 1-ой и 2-ой частицы после удара.  -  совместная скорость частиц после абсолютно неупругого удара. q - угол отклонения частицы после удара, т.е. угол, образованный векторами  и  или   и  g - угол разлета частиц после удара, т.е. угол, образованный векторами  и  .        и  - импульсы соответственно 1-ой и 2-ой частицы после удара.   E1, E2 - кинетические энергии соответственно 1-ой и 2-ой частицы после удара. DE - изменение кинетической энергии механической системы, состоящей из двух частиц за время удара. Виды взаимодействия: а) абсолютно упругий удар (АУУ);  б) неупругий удар (НУУ); в) абсолютно неупругий удар (АНУУ). Общие исходные данные: m* = 10-3 кг, V* = 10 м/с, a* = p/2.
647
2022г Вариант 5 - ДЗ №3 + ДЗ №4 - Колебания + Волны Зачтено на максимальный баллВариант 5 - ДЗ №3 - Колебания Механическая система для этой задачи расположена на горизонтальной плоскости и представлена на рис. 18. Значения массы шариков, длина и жёсткость, соединяющих их пружин, а также другие исходные данные приведены в табл.9. Определить: - положение центра масс МС; - жёсткость левой и правой частей пружины, длины которых равны l10 и l20; - приведённую массу МС; - круговую частоту и период собственных незатухающих колебаний. Трением шариков о контактную горизонтальную плоскость пренебречь. Дополнительно (в соответствии с общими условиями задачи 3) рассчитать все требуемые величины и вывести уравнение затухающих колебаний вертикального пружинного маятника (см. рис. 27), у которого масса шарика равна m = m1, а длина и жёсткость пружины равны соответственно l0 и k (см. табл.9). В начальный момент времени шарик смещают так, что длина пружины становится равной l, а затем кратковременным воздействием сообщают скорость v1 или v2 . В результате система приходит в колебательное движение в вертикальном направлении. Трением шарика о боковую поверхность пренебречь. Варm1m2kl0lrv1v250,4m*0,6m*1,2k*l*1,2l*2r*0,4u* 2022г Вариант 5 - ДЗ №4 - Волны Зачтено на максимальный баллВ среде на расстоянии d друг от друга находятся одинаковые излучатели плоских продольных, акустических, монохроматических волн (S1 и S2, рис.34). Оба излучателя колеблются по закону , где - смещение излучателя из положения равновесия при колебаниях, A - амплитуда, ω - круговая частота при колебаниях излучателя. Исходные данные для каждого варианта задания представлены в таблице № 16 № варЧастота υ кГцАмплитуда А, ммd, мl, мСредаСкорость волны в среде с, м/с5200,20,620вода1500 Необходимо: - Вывести уравнение колебаний частиц среды в точке М, находящейся на расстоянии l от второго излучателя. Считать, что направления колебаний частиц среды в точке М совпадают с осью x; - Определить отношение амплитуды смещений частиц среды к длине волны l; - Вывести уравнение колебаний скорости частиц среды в точке М. Найти амплитуду скорости частиц среды и её отношение к скорости распространения волны; - Вывести уравнение колебаний деформаций частиц среды в точке М. Найти связь амплитуды деформаций с амплитудой скорости частиц среды.
648
2022г Вариант 5 - ДЗ №3 - Колебания Зачтено на максимальный баллВариант 5 - ДЗ №3 - КолебанияМеханическая система для этой задачи расположена на горизонтальной плоскости и представлена на рис. 18. Значения массы шариков, длина и жёсткость, соединяющих их пружин, а также другие исходные данные приведены в табл.9.Определить:- положение центра масс МС;- жёсткость левой и правой частей пружины, длины которых равны l10 и l20;- приведённую массу МС;- круговую частоту и период собственных незатухающих колебаний.Трением шариков о контактную горизонтальную плоскость пренебречь.Дополнительно (в соответствии с общими условиями задачи 3) рассчитать все требуемые величины и вывести уравнение затухающих колебаний вертикального пружинного маятника (см. рис. 27), у которого масса шарика равна m = m1, а длина и жёсткость пружины равны соответственно l0 и k (см. табл.9). В начальный момент времени шарик смещают так, что длина пружины становится равной l, а затем кратковременным воздействием сообщают скорость v1 или v2 . В результате система приходит в колебательное движение в вертикальном направлении. Трением шарика о боковую поверхность пренебречь. Варm1m2kl0lrv1v250,4m*0,6m*1,2k*l*1,2l*2r*0,4u* 
649
2022г Вариант 5 - ДЗ №4 - Волны Зачтено на максимальный баллВ среде на расстоянии d друг от друга находятся одинаковые излучатели плоских продольных, акустических, монохроматических волн (S1 и S2, рис.34). Оба излучателя колеблются по закону , где - смещение излучателя из положения равновесия при колебаниях, A - амплитуда, ω - круговая частота при колебаниях излучателя.Исходные данные для каждого варианта задания представлены в таблице № 16№ варЧастота υкГцАмплитуда А,ммd, мl, мСредаСкорость волны в среде с, м/с5200,20,620вода1500 Необходимо:- Вывести уравнение колебаний частиц среды в точке М, находящейся на расстоянии l от второго излучателя. Считать, что направления колебаний частиц среды в точке М совпадают с осью x;- Определить отношение амплитуды смещений частиц среды к длине волны l;- Вывести уравнение колебаний скорости частиц среды в точке М. Найти амплитуду скорости частиц среды и её отношение к скорости распространения волны;- Вывести уравнение колебаний деформаций частиц среды в точке М. Найти связь амплитуды деформаций с амплитудой скорости частиц среды.​
651
2022г Вариант 5 - ДЗ - Определение УЗД Зачетно на максимальный балл Вариант 5 - ДЗ - Определение УЗДУсловие Определить УЗД (уровни звукового давления) в расчетной точке при заданных уровнях звуковой мощности источников (Lp=f(fсг)) (источники ненаправленные), указанном расположении расчетной точки относительно источников шума, габаритных размерах промышленного помещения. Максимальный габарит любого источника много меньше расстояния до расчетной точки. Полученные данные сравнить с нормативными значениями (СН 2.2.4/2.1.8.562-96). Построить расчетный и предельный спектры. Сделать выводы о необходимости защитных мероприятий. Предложить защитные мероприятия.Примечание: постоянную помещения В определить в соответствии с назначением помещения и его объемом по СНиП II-12-77ВариантСхема расположения расчетной точки относительно источников шума (приложение 1)Расположение источников в пространствеРасстояния от источника до расчетной точки, мУровни звуковой мощности источников,(Lp=f(fсг))(приложение 2)Габаритные размеры промышленного помещения, А*В*С, м35Схема 12– подвешен1,3 – на полуR1=5R2=5R3=51 - 42 - 53 - 610х20х5Схема расположения расчетной точки относительно источников шума в помещении.Уровни звуковой мощности источников шума:№, п/п ,дБ631252505001000200040008000172726868686871702788183858586898538387858585828383                               
656
2022г Вариант 6 - ДЗ №1 + ДЗ №2 - Динамика материальной точки - Динамика вращательного движения Защищено в сумме на 20 из 20 возможных баллов. Две гладкие частицы сферической формы с массами m1 и m2, движущиеся со скоростями   и  , сталкиваются под углом b, как указано на рис.1. Расстояние до места встречи и скорости частиц соответствуют условиям соударения (отсутствию промаха).  На рис.1: b - угол встречи, т.е. угол, образованный векторами  и   ; a = (p - b) - дополнительный угол; j - угол между линией удара O1O2 и вектором   . Другие обозначения:    и   - скорости соответственно 1-ой и 2-ой частицы после удара.  -  совместная скорость частиц после абсолютно неупругого удара. q - угол отклонения частицы после удара, т.е. угол, образованный векторами  и  или   и  g - угол разлета частиц после удара, т.е. угол, образованный векторами  и  .        и  - импульсы соответственно 1-ой и 2-ой частицы после удара.   E1, E2 - кинетические энергии соответственно 1-ой и 2-ой частицы после удара. DE - изменение кинетической энергии механической системы, состоящей из двух частиц за время удара. Виды взаимодействия: а) абсолютно упругий удар (АУУ);  б) неупругий удар (НУУ); в) абсолютно неупругий удар (АНУУ). Общие исходные данные: m* = 10-3 кг, V* = 10 м/с, a* = p/2. Однородный жесткий стержень длиной l=1 м и массой M=1 кг свободно висит на горизонтальной идеально гладкой оси вращения О, как показано на рис. 1.  Ось вращения перпендикулярна плоскости рисунка. Малый шарик массой m=0,1кг, летящий горизонтально со скоростью  , движется в плоскости рисунка и ударяет в стержень. При этом взаимодействие шарика со стержнем может происходить в виде:  a)    абсолютно упругого удара (АУУ); b)    неупругого удара (НУУ);  c)    абсолютно неупругого удара (АНУУ). Сразу после удара стержень вращается с угловой скоростью 0, а шарик приобретает скорость   и продолжает двигаться в плоскости рисунка. Другие обозначения:  E - потеря энергии при ударе;   - минимальная начальная скорость шарика, при которой стержень после удара совершает полный оборот;  K - угловая скорость стержня при прохождении им крайней верхней точки; m - максимальный угол отклонения стержня от положения равновесия.  Другие исходные данные и искомые величины для каждого варианта задания представлены в таблице: